References

  1. S. Armenta, S. Garrigues, M. de la Guardia, The role of green extraction techniques in Green Analytical Chemistry, TrAC, Trends Anal. Chem., 71 (2015) 2–8.
  2. R. Hauser, A.M. Calafat, Phthalates and human health, Occup. Environ. Med., 62 (2005) 806–816.
  3. P. Gimeno, A.-F. Maggio, C. Bousquet, A. Quoirez, C. Civade, P.-A. Bonnet, Analytical method for the identification and assay of 12 phthalates in cosmetic products: application of the ISO 12787 international standard “Cosmetics–Analytical methods– Validation criteria for analytical results using chromatographic techniques”, J. Chromatogr. A, 1253 (2012) 144–153.
  4. K. Bielowska-Bień, Z. Zdrojewicz, Phthalates – structure, properties, clinical significance, Adv. Clin. Exp. Med., 15 (2006) 677–681.
  5. H.J. Koo, B.M. Lee, Estimated exposure to phthalates in cosmetics and risk assessment, J. Toxicol. Environ. Health, 67 (2004) 1901–1914.
  6. A.I. Zia, M.S.A. Rahman, S.C. Mukhopadhyay, P.L. Yu, I.H. Al-Bahadly, C.P. Gooneratne, J. Kosel, T.S. Liao, Technique for rapid detection of phthalates in water and beverages, J. Food Eng., 116 (2013) 515–523.
  7. Z. Guo, S. Wang, D. Wei, M. Wang, H. Zhang, P. Gai, J. Duan, Development and application of a method for analysis of phthalates in ham sausages by solid-phase extraction and gas chromatography-mass spectrometry, Meat Sci., 84 (2010) 484–490.
  8. K. Svensson, R.U. Hernandez-Ramirez, A. Burguete-Garcia, M.E. Cebrian, A.M. Calafat, L.L. Needham, L. Claudio, L. Lopez-Carrillo, Phthalate exposure associated with selfreported diabetes among Mexican women, Environ. Res., 111 (2011) 792–796.
  9. M.P. Lind, B. Zethelius, L. Lind, Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly, Diabetes Care, 35 (2012) 1519–1524.
  10. P.T.C. Harrison, P. Holmes, C.D.N. Humfrey, Reproductive health in humans and wildlife: are adverse trends associated with environmental chemical exposure?, Sci. Total Environ., 205 (1997) 97–106.
  11. X. Luo, F. Zhang, S. Ji, B. Yang, X. Liang, Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution, Talanta, 120 (2014) 71–75.
  12. S.X. Zhang, H.Y. Niu, Y.Q. Cai, Y.L. Shi, Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples, Anal. Chim. Acta, 665 (2010) 167–175.
  13. I. Espadaler, J. Caixach, J. Om, F. Ventura, M. Cortina, F. Paune, J. Rivera, Identification of organic pollutants in Ter river and its system of reservoirs supplying water to Barcelona (Catalonia, Spain): a study by GC/MS and FAB/MS, Water Res., 31 (1997) 1996–2004.
  14. F. Zeng, K. Cui, Z. Xie, M. Liu, Y. Li, Y. Lin, Z. Zeng, F. Li, Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China, Environ. Int., 34 (2008) 372–380.
  15. Y. Liu, Z. Chen, J. Shen, Occurrence and removal characteristics of phthalate esters from typical water sources in northeast China, J. Anal. Methods Chem., 41 (2013) 1–8.
  16. M.T. Das, P. Ghosh, I.S. Thakur, Intake estimates of phthalate esters for South Delhi population based on exposure media assessment, Environ. Pollut., 189 (2014) 118–125.
  17. S. Net, D. Dumoulin, R. El-Osmani, S. Rabodonirina, B. Ouddane, Case study of PAHs, Me-PAHs, PCBs, phthalates and pesticides contamination in the Somme River water, France, J. Environ. Res., 8 (2014) 1159–1170.
  18. M. Kim, D. Li, W.J. Shim, J.R. Oh, J. Park, Simultaneous gas chromatography-mass spectrometric determination of total and individual phthalic esters utilizing alkaline hydrolysis and silyl derivatization technique, Bull. Korean Chem. Soc., 28 (2007) 432–438.
  19. M. Jeddi Z., R. Ahmadkhaniha, M. Yunesian, N. Rastkari, Magnetic solid-phase extraction based on modified magnetic nanoparticles for the determination of phthalate diesters in water samples, J. Chromatogr. Sci., 53 (2015) 385–391.
  20. D. Amiridou, D. Voutsa, Alkylphenols and phthalates in bottled waters, J. Hazard. Mater., 185 (2011) 281–286.
  21. X. Wu, H. Hong, X. Liu, W. Guan, L. Meng, Y. Ye, Y. Ma, Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water, Sci. Total Environ., 444 (2013) 224–230.
  22. X. Zheng, B.T. Zhang, Y. Teng, Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities, Sci. Total Environ., 476–477 (2014) 107–113.
  23. I. Keriene, A. Maruska, J. Sitonyte, Solid phase extraction and gas chromatographic-mass spectrometric analysis of phthalates in surface water: method development and validation, Chemija, 22 (2011) 204–209.
  24. W. He, N. Qin, X. Kong, W. Liu, Q. He, H. Ouyang, C. Yang, Y. Jiang, Q. Wang, B. Yang, F. Xu, Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake, Sci. Total Environ., 461–462 (2013) 672–680.
  25. K. Furtmann, Phthalates in surface water—a method for routine trace level analysis, J. Anal. Chem., 348 (1994) 291–296.
  26. S.H. Liou, G.C.C. Yang, C.L. Wang, Y.H. Chiu, Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects, J. Hazard. Mater., 277 (2014) 169–179.
  27. G.C.C. Yang, C.H. Yen, C.L. Wang, Monitoring and removal of residual phthalate esters and pharmaceuticals in the drinking water of Kaohsiung City, Taiwan, J. Hazard. Mater., 277 (2014) 57–61.
  28. A.J. Al Khatib, I.Y. Habib, M. Muhammad, F.I. Danladi, S.S. Bala, A. Adamu, Analysis of phthalate plasticizer in Jordanian bottled waters by liquid chromatography-tandem mass spectrophotometry (LC-MS/MS), Eur. Sci. J., 10 (2014) 271–282.
  29. T.E. Felix-Canedo, J.C. Duran-Alvarez, B. Jiménez-Cisneros, The occurrence and distribution of a group of organic micropollutants in Mexico City’s water sources, Sci. Total Environ., 454–455 (2013) 109–118.
  30. H. Farahani, P. Norouzi, R. Dinarvand, M.R. Ganjali, Development of dispersive liquid–liquid microextraction combined with gas chromatography–mass spectrometry as a simple, rapid and highly sensitive method for the determination of phthalate esters in water samples, J. Chromatogr. A, 1172 (2007) 105–112.
  31. G. Prokupkova, K. Holadova, J. Poustka, J. Hajslova, Development of a solid-phase microextraction method for the determination of phthalic acid esters in water, Anal. Chim. Acta, 457 (2002) 211–223.
  32. K. Holadova, G. Prokupkova, J. Hajslova, J. Poustka, Headspace solid-phase microextraction of phthalic acid esters from vegetable oil employing solvent based matrix modification, Anal. Chim. Acta, 582 (2007) 24–33.
  33. R. Alzaga, A. Pena, J.M. Bayona, Determination of phthalic monoesters in aqueous and urine samples by solid-phase microextraction–diazomethane on fibre derivatization–gas chromatography–mass spectrometry, J. Sep. Sci., 26 (2003) 87–96.
  34. M.H. Devier, K. Le Menach, L. Viglino, L. Di Gioia, P. Lachassagne, H. Budzinski, Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral waters, Sci. Total Environ., 443 (2013) 621–632.
  35. C. Bach, X. Dauchy, I. Severin, J.F. Munoz, S. Etienne, M.C. Chagnon, Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and potential toxicity, Food Chem., 139 (2013) 672–680.
  36. R. Batlle, C. Nerin, Application of single-drop microextraction to the determination of dialkyl phthalate esters in food simulants, J. Chromatogr. A, 1045 (2004) 29–35.
  37. S.Bergström, T. Barri, J. Norberg, J.A. Jonsson, L. Mathiasson, Extracting syringe for extraction of phthalate esters in aqueous environmental samples, Anal. Chim. Acta, 394 (2007) 240–247.
  38. A. Prieto, S. Schrader, M. Moeder, Determination of organic priority pollutants and emerging compounds in wastewater and snow samples using multiresidue protocols on the basis of microextraction by packed sorbents coupled to large volume injection gas chromatography–mass spectrometry analysis, J. Chromatogr. A, 1217 (2010) 6002–6011.
  39. J. Meng, J. Bu, C. Deng, X. Zhang, Preparation of polypyrrolecoated magnetic particles for micro solid-phase extraction of phthalates in water by gas chromatography–mass spectrometry analysis, J. Chromatogr. A, 1218 (2011) 1585–1591.
  40. L. Sun, X. Sun, X.B. Du, Y.S. Yue, Determination of sulfonamides in soil samples based on alumina-coated magnetite nanoparticles as adsorbents, Anal. Chim. Acta, 665 (2010) 185–192.
  41. K. Luks-Betlej, P. Popp, B. Janoszka, H. Paschke, Solid-phase microextraction of phthalates from water, J.Chromatogr. A, 938 (2001) 93–101.
  42. B. Osman, E.T. Özer, N. Beşirli, Ş. Gücer, Development and application of a solid phase extraction method for the determination of phthalates in artificial saliva using new synthesised microspheres, Polym. Test., 32 (2013) 810–818.
  43. S. Jonsson, H. Boren, Analysis of mono-and diesters of o-phthalic acid by solid-phase extractions with polystyrene– divinylbenzene-based polymers, J. Chromatogr. A, 963 (2002) 393–400.
  44. P. Prapatpong, W. Kanchanamayoon, Determination of phthalate esters in drinking water using solid-phase extraction and gas chromatography, J. Appl. Sci., 10 (2010) 1987–1990.
  45. Y.Q.,G. Cai, B. Jiang, J.F. Liu, Q.X. Zhou, Multi-walled carbon nanotubes packed cartridge for the solid-phase extraction of several phthalate esters from water samples and their determination by high performance liquid chromatography, Anal. Chim. Acta, 494 (2003) 149–156.
  46. Y.B. Luo, Q.W. Yu, B.F. Yuan, Y.Q. Feng, Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes, Talanta, 90 (2012) 123–131.
  47. Z. Du, M. Liu, G. Li, Novel magnetic SPE method based on carbon nanotubes filled with cobalt ferrite for the analysis of organochlorine pesticides in honey and tea, J. Sep. Sci., 36 (2013) 3387–3394.
  48. H. Grajek, J. Jonik, Z. Witkiewicz, T. Wawer, M. Purchała, Application of graphene and its derivatives in chemical analysis, TrAC, Trends Anal. Chem., 50 (2020) 445–471.
  49. H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun, R.S. Ruoff, Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents, Adv. Funct. Mater., 22 (2012) 4421–4425.
  50. D. Wideł, K. Jedynak, Z. Witkiewicz, J. Oszczudłowski, Investigation of mesoporous carbon materials by magnetic solid phase extraction of selected phthalates from water samples, Adsorpt. Sci. Technol., 34 (2016) 426–438.
  51. J. Choma, M. Jaroniec, A. Zawiślak, K. Jedynak, Adsorption properties of nanoporous carbon materials obtained with application of silica and polymer matrices, Ochr. Środ., 31 (2009) 17–23 (in Polish).
  52. K. Jedynak, M. Repelewicz, K. Kurdziel, D. Wideł, Removal of orange II from aqueous solutions using micro-mesoporous carbon materials: kinetic and equilibrium studies, Desal. Water Treat., 190 (2020) 294–311.
  53. J. Sun, Q. Liang, Q. Han, X. Zhang, M. Ding, One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples, Talanta, 132 (2015) 557–563.
  54. Q. Zhao, F. Wei, Y.B. Luo, N. Xiao, Y.Q. Feng, Rapid magnetic solid-phase extraction based on magnetic multiwalled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in edible oils, J. Agric. Food Chem., 59 (2011) 12794–12800.
  55. M. Moazzen, R. Ahnadkhanina, M.E. Gorji, M. Yunesian, N. Rastkari, Magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes for the determination of polycyclic aromatic hydrocarbons in grilled meat samples, Talanta, 115 (2013) 957–965.
  56. F. Makkliang, P. Kanatharana, P. Thavarungkul, C. Thamakhet, Development of magnetic micro-solid phase extraction for analysis of phthalate esters in packaged food, Food Chem., 166 (2015) 275–282.
  57. C. Herrero-Latorre, J. Barciela-Garcia, S. Garcia-Martin, R.M. Pena-Crecente, J. Otarola-Jimenez, Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review, Anal. Chim Acta, 892 (2015) 10–26.
  58. Y. Guan, C. Jiang, C. Hu, L. Jia, Preparation of multi-walled carbon nanotubes functionalized magnetic particles by sol– gel technology and its application in extraction of estrogens, Talanta, 83 (2010) 337–343.
  59. Q. Gao, D. Luo, M. Bai, Z.W. Chen, Y.Q. Feng, Rapid determination of estrogens in milk samples based on magnetite nanoparticles/polypyrrole magnetic solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry, J. Agric. Food Chem., 59 (2011) 8543–8549.
  60. M.L. Chen, L.L. Suo, Q. Gao, Y.Q. Feng, Determination of eight illegal drugs in human urine by combination of magnetic solid‐phase extraction with capillary zone electrophoresis, Electrophoresis, 32 (2011) 2099–2106.
  61. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem., 103 (1999) 7745–7746.
  62. J. Lee, S. Yoon, T. Hyeon, S.M. Oh, K.B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun., 21 (1999) 2177–2178.
  63. T. Kyotani, Control of porous structure in carbon, Carbon, 38 (2000) 269–286.
  64. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Oshuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructured, J. Am. Chem. Soc., 122 (2000) 10712–10713.
  65. J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv. Mater., 18 (2006) 2073–2094.
  66. S. Inagaki, K.Oikawa, Y. Kubota, Effect of carbon source on the textural and electrochemical properties of novel cage-type mesoporous carbon as a replica of KIT-5 mesoporous silica, Chem. Lett., 38 (2009) 918–919.
  67. C. Liang, K. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by selfassembly of block copolymers, Angew. Chem. Int. Ed., 43 (2004) 5785–5789.
  68. S. Tanaka, N. Nishiama, Y. Egashira, K. Ueyama, Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite, Chem. Commun., 16 (2005) 2125–2127.
  69. F. Zhang, Y. Meng, D. Gu, Y. Yan, C. Yu, B. Tu, D. Zhao, A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure, J. Am. Chem. Soc., 127 (2005) 13508–13509.
  70. J. Górka, A. Zawiślak, J. Choma, M. Jaroniec, KOH activation of mesoporous carbons obtained by soft-templating, Carbon, 46 (2008) 1159–1161.
  71. J. Jin, N. Nishiyama, Y. Egashira, K. Ueyama, Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers, Microporous Mesoporous Mater., 118 (2009) 218–223.
  72. M. Kubota, A. Hata, H. Matsuda, Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating, Carbon, 47 (2009) 2805–2811.
  73. J. Górka, A. Zawiślak, J. Choma, M. Jaroniec, Adsorption and standard properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation, Appl. Surf. Sci., 256 (2010) 5187–5190.
  74. J. Jin, S. Tanaka, Y. Egashira, N. Nishiyama, KOH activation of ordered mesoporous carbons preparing by a soft-templating method and their enhanced electrochemical properties, Carbon, 48 (2010) 1985–1989.
  75. J. Choma, K. Jedynak, D. Jamioła, M. Jaroniec, The influence of carbonization temperature on adsorptive and structural properties of mesopores carbons obtained by soft-templating method, Ochr. Środ., 34 (2012) 3–8 (in Polish).
  76. A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A. Tais L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J., 174 (2011) 117–125.
  77. K. Xia, Q. Gao, J. Jiang, J. Hu, Hierarchical porous carbons with controlled micropores and mesopores for supercapacitorelectrode materials, Carbon, 46 (2008) 1718–1726.
  78. K. Xia, Q. Gao, C. Wu, S. Song, M. Ruan, Activation, characterization and hydro-gen storage properties of the mesoporous carbon CMK-3, Carbon, 45 (2007) 1989–1996.
  79. J. Choma, K. Jedynak, W. Fahrenholz, J. Ludwinowicz, M. Jaroniec, Microporosity development in phenolic resinbased mesoporous carbons for enhancing CO2 adsorption at ambient conditions, Appl. Surf. Sci., 289 (2014) 592–600.
  80. G. San Miguel, G.D. Fowler, C.J. Sollars, A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber, Carbon, 41 (2003) 1009–1016.
  81. X. Wang, C.D. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermal stability by selfassembly of resorcinol−formaldehyde and block copolymers under highly acidic conditions, Langmuir, 24 (2008) 7500–7505.
  82. J. Choma, A. Kalinowska, K. Jedynak, M. Jaroniec, Reproducibility of the synthesis and adsorption properties of ordered mesoporous carbons obtained by the soft-templating method, Ochr. Śr., 34 (2012) 1–8 (in Polish).
  83. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  84. S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982.
  85. J. Jagiello, J.P. Olivier, 2D-NLDFT Adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation, Carbon, 55 (2013) 70–80.
  86. J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption, 19 (2013) 777–783.
  87. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  88. M. Marciniak, J. Goscianska, R. Pietrzak, Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation, J. Mater. Sci., 53 (2018) 5997–6007.
  89. T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata, Water Air Soil Pollut., 218 (2011) 499.
  90. J. Su, C. Fang, M. Yang, Y. Cheng, Zhen Wang, Z. Huang, C. You, A controllable soft-templating approach to synthesize mesoporous carbon microspheres derived from d-xylose via hydrothermal method, J. Mater. Sci. Technol., 38 (2020) 183–188.
  91. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfao, Modification of the surface chemistry of activated carbons, Carbon, 37 (1999) 1379–1389.
  92. R. Ma, Y. Ma, Y. Gao, J. Cao, Preparation of micro-mesoporous carbon from seawater‑impregnated sawdust by low temperature one-step CO2 activation for adsorption of oxytetracycline, SN Appl. Sci., 2 (2020) 171–185.
  93. M. Garnuszek, B. Szczepanik, S. Gawinkowski, P.M. Słomkiewicz, Z. Witkiewicz, K. Jedynak, Spectral characterization of mesoporous carbons modified by Ag, Au, TiO2 and Fe3O4 nanoparticles, Ochr. Sr., 34 (2012) 17–22 (in Polish).
  94. D.J. Kim, H.I. Lee, J.E. Yie, S.-J. Kim, J.M. Kim, Ordered mesoporous carbons: Implication of surface chemistry, pore structure and adsorption of methyl mercaptan, Carbon, 43 (2005) 1868–1873.
  95. H.B.M. Emrooz, M. Maleki, A. Rashidi, M. Shokouhimehr, Adsorption mechanism of a cationic dye on a biomassderived microand mesoporous carbon: structural, kinetic, and equilibrium insight, Biomass Convers. Biorefin., 11 (2021) 943–954.
  96. S.F. Vaughn, J.A. Kenar, A.R. Thompson, S.C. Peterson, Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates, Ind. Crops Prod., 51 (2013) 437–443.
  97. Regulation of the Minister of Health Dz.U. 2007 nr 61 poz. 417, from 10 April 2010.