References

  1. A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84 (2011) 1175–1180.
  2. C.U. Chan, M. Arora, C.-D. Ohl, Coalescence, growth, and stability of surface-attached nanobubbles, Langmuir, 31 (2015) 7041–7046.
  3. H. Rezaei Nejad, M. Ghassemi, S.M. Mirnouri Langroudi, A. Shahabi, A molecular dynamics study of nanobubble surface tension, Mol. Simul., 37 (2011) 23–30.
  4. J.H. Weijs, D. Lohse, Why surface nanobubbles live for hours, Phys. Rev. Lett., 110 (2013) 054501, doi: 10.1103/ PhysRevLett.110.054501.
  5. J.R.T. Seddon, D. Lohse, W.A. Ducker, V.S.J. Craig, A deliberation on nanobubbles at surfaces and in bulk, ChemPhysChem, 13 (2012) 2179–2187.
  6. L. Luo, H.S. White, Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes, Langmuir, 29 (2013) 11169–11175.
  7. L.J. Zhang, Y. Zhang, X.H. Zhang, Z.X. Li, G.X. Shen, M. Ye, C.H. Fan, H.P. Fang, J. Hu, Electrochemically controlled formation and growth of hydrogen nanobubbles, Langmuir, 22 (2009) 8109–8113.
  8. P. Li, M. Takahashi, K. Chiba, Enhanced free-radical generation by shrinking microbubbles using a copper catalyst, Chemosphere, 77 (2009) 1157–1160.
  9. G.M. Liu, Z.H. Wu, V.S.J. Craig, Cleaning of protein-coated surfaces using nanobubbles: an investigation using a quartz crystal microbalance, J. Phys. Chem. C, 112 (2008) 16748–16753.
  10. G. Senthilkumar, C. Rameshkumar, M.N.V.S. Nikhil, J. Navin Ram Kumar, An investigation of nanobubbles in aqueous solutions for various applications, Appl. Nanosci., 8 (2018) 1557–1567.
  11. C. Rameshkumar, G. Senthilkumar, R. Subalakshmi, R. Gogoi, Generation and characterization of nanobubbles by ionization method for wastewater treatment, Desal. Water Treat., 164 (2019) 98–101.
  12. M. Matsumoto, K. Tanaka, Nano bubble—size dependence of surface tension and inside pressure, Fluid Dyn. Res., 40 (2008) 546–553.
  13. B.E. Oeffinger, M.A. Wheatley, Development and characterization of a nano-scale contrast agent, Ultrason. Langmuir, 42 (2004) 343–347.
  14. M. Sumikura, M. Hidaka, H. Murakami, Y. Nobutomo, T. Murakami, Ozone micro-bubble disinfection method for wastewater reuse system, Water Sci. Technol., 56 (2007) 53–61.
  15. S.J. Yang, P.C. Tsai, E. Stefan Kooij, A. Prosperetti, H.J.W. Zandvliet, D. Lohse, Electrolytically generated nanobubbles on highly orientated pyrolytic graphite surfaces, Langmuir, 25 (2009) 1466–1474.
  16. S. Wang, M.H. Liu, Y.M. Dong, Understanding the stability of surface nanobubbles, J. Phys. Condens Matter., 25 (2013) 184007, doi: 10.1088/0953-8984/25/18/184007.
  17. X.H. Zhang, N. Maeda, V.S.J. Craig, Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions, Langmuir, 22 (2006) 5025–5035.
  18. C. Rameshkumar, S. Lakshmi Sankar, G. Senthilkumar, Characterisation of seed germination using nanaobubbled water, Int. J. Ambient Energy, (2019) (in Press), doi: 10.1080/01430750.2019.1672581.
  19. S. Gobinath, G. Senthilkumar, N. Beemkumar, Air nanobubbleenhanced combustion study using mustard biodiesel in a common rail direct injection engine, Energy Sources Part A, 41 (2018) 1809–1816.
  20. S. Mozaffar, P. Tchoukov, A. Mozaffar, J. Atias, J. Czarnecki, N. Nazemifar, Capillary driven flow in nanochannels – application to heavy oil rheology studies, Colloids Surf., A, 513 (2017) 178–187.
  21. S. Mozaffari, P. Tchoukov, J. Atias, J. Czarnecki, N. Nazemifard, Effect of asphaltene aggregation on rheological properties of Diluted Athabasca Bitumen, Energy Fuels, 29 (2015) 5595–5599.
  22. Z.G. Zheng, X.C. Zhang, D. Carbo, C. Clark, C.-A. Nathan, Y. Lvov, Sonication assisted synthesis of polyelectrolyte coated curcumin nanoparticles, Langmuir, 26 (2010) 7679–7681.
  23. Y.M. Lvov, P. Pattekari, X.C. Zhang, V. Torchilin, Converting poorly soluble materials into stable aqueous nanocolloids, Langmuir, 27 (2011) 1212–1217.
  24. P. Pattekari, Z. Zheng, X. Zhang T. Levchenko, V. Torchilin, Y. Lvov, Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel, Phys. Chem. Chem. Phys., 13 (2011) 9014–9019.
  25. A.F. Alghannam, Metabolic limitations of performance and fatigue in football, Asian J. Sports Med., 4 (2012) 65–73.
  26. D. Vergara, C. Bellomo, X.C. Zhang, V. Vergaro, A. Tinelli, V. Lorusso, R. Rinaldi, Y.M. Lvov, S. Leporatti, M. Maffia, Lapatinib/Paclitaxel polyelectrolyte nanocapsules for overcoming multidrug resistance in ovarian cancer, Nanomedicine: NBM, 8 (2012) 891–899.
  27. V. Vergaro, F. Scarlino, C. Bellomo, R. Rinaldi, D. Vergara, M. Maffia, F. Baldassarre, G. Giannelli, X.C. Zhang, Y.M. Lvov, S. Leporatti, Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells, Adv. Drug Delivery Rev., 63 (2011) 847–864.
  28. G. Senthilkumar, M. Purusothaman, C. Rameshkumar, N. Joy, S. Sachin, K. Siva Thanigai, Generation and characterization of nanobubbles for heat transfer applications, Mater. Today:. Proc., 43 (2021) 3391–3393.