References

  1. F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of standard seawater and the definition of the reference-composition salinity scale, Deep Sea Res. Part I, 55 (2008) 50–72.
  2. K. Ghyselbrecht, B. Sansen, A. Monballiu, Z.L. Ye, L. Pinoy, B. Meesschaert, Cationic selectrodialysis for magnesium recovery from seawater on lab and pilot scale, Sep. Purif. Technol., 221 (2019) 12–22.
  3. S. Roobavannan, S. Vigneswaran, G. Naidu, Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of water and lithium from seawater, Chem. Eng. J., 396 (2020) 125386, doi: 10.1016/j. cej.2020.125386.
  4. D.P. Santiago Ramos, L.A. Coogan, J.G. Murphy, J.A. Higgins, Low-temperature oceanic crust alteration and the isotopic budgets of potassium and magnesium in seawater, Earth Planet. Sci. Lett., 541 (2020) 116290,
    doi: 10.1016/j.epsl.2020. 116290.
  5. J.J. Ramos, W.H. Leiva, C.N. Castillo, C.F. Ihle, P.D. Fawell, R.I. Jeldres, Seawater flocculation of clay-based mining tailings: impact of calcium and magnesium precipitation, Miner. Eng., 154 (2020) 106417,
    doi: 10.1016/j.mineng.2020.106417.
  6. S. Shaddel, T. Grini, J.P. Andreassen, S.W. Østerhus, S. Ucar, Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization, Chemosphere, 256 (2020) 126968,
    doi: 10.1016/j.chemosphere.2020.126968.
  7. Y. Sano, Y. Hao, F. Kuwahara, Development of an electrolysis based system to continuously recover magnesium from seawater, Heliyon, 4 (2018) e00923, doi: 10.1016/j.heliyon.2018. e00923.
  8. T. Qina, P. Zhang, W. Qin, A novel method to synthesize lowcost magnesium fluoride spheres from seawater, Ceram. Int., 43 (2017) 14481–14483.
  9. W. Shi, P. Nie, X. Shang, J. Yang, Z. Xie, R. Xu, J. Liu, Berlin green-based battery deionization-highly selective potassium recovery in seawater, Electrochim. Acta, 310 (2019) 104–112.
  10. S. Shaddel, T. Grini, S. Ucar, K. Azrague, J.P. Andreassen, S.W. Østerhus, Struvite crystallization by using raw seawater: improving economics and environmental footprint while maintaining phosphorus recovery and product quality, Water Res., 173 (2020) 115572, doi: 10.1016/j.watres.2020.115572.
  11. C.A. Esteves Costa, W. Coleman, M. Dube, A.E. Rodrigues, P.C. Rodrigues Pinto, Assessment of key features of lignin from lignocellulosic crops: stalks and roots of corn, cotton, sugarcane, and tobacco, Ind. Crops Prod.,
    92 (2016) 136–148.
  12. Y. Dai, Q. Sun, W. Wang, L. Lu, M. Liu, J. Li, S. Yang, Y. Sun, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Y. Chen, X. Zhang, F. Gao, Y. Zhang, Utilization of agricultural waste as adsorbent for the removal of contaminants: a review, Chemosphere, 211 (2018) 235–253.
  13. E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D.O. Sulistiono, D. Prasetyoko, Review on recent advances of carbonbased adsorbent for methylene blue removal from waste water, Mater. Today Chem., 16 (2020) 100233, doi: 10.1016/j. mtchem.2019.100233.
  14. S. Zhu, J. Xu, Y. Kuang, Z. Cheng, Q. Wu, J. Xie, B. Wang, W. Gao, J. Zeng, J. Li, K. Chen, Lignin-derived sulfonated porous carbon from cornstalk for efficient and selective removal of cationic dye, Ind. Crops Prod., 159 (2021) 113071, doi: 10.1016/j.indcrop.2020.113071.
  15. R. Boota, H.N. Bhatti, M.A. Hanif, Removal of Cu(II) and Zn(II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass, Sep. Purif. Technol., 44 (2009) 4000–4022.
  16. Q. Chen, J. Zheng, L. Wen, C. Yang, L. Zhang, A multi-functionalgroup modified cellulose for enhanced heavy metal cadimum adsorption: performance and quantum chemical mechanism, Chemosphere, 224 (2019) 509–518.
  17. J. Li, H. Li, Z. Yuan, J. Fang, L. Chang, H. Zhang, C. Li, Role of sulfonation in lignin-based material for adsorption removal of cationic dyes, Int. J. Biol. Macromol., 135 (2019) 1171–1181.
  18. R. Elangovan, L. Philip, K. Chandraraj, Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies, J. Hazard. Mater., 152 (2008) 100–112.
  19. J.M. Fonseca, L. Spessato, A.L. Cazetta, K.C. Bedin, S.A.R. Melo, F.L. Souza, V.C. Almeida, Optimization of sulfonation process for the development of carbon-based catalyst from crambe meal via response surface methodology, Energy Convers. Manage., 217 (2020) 112975, doi: 10.1016/j.enconman.2020.112975.
  20. J. Wolska, J. Walkowiak-Kulikowska, On the sulfonation of fluorinated aromatic polymers: synthesis, characterization and effect of fluorinated side groups on sulfonation degree, Eur. Polym. J., 129 (2020) 109635, doi: 10.1016/j.eurpolymj.2020.109635.
  21. W. Gao, J.P.W. Inwood, P. Fatehi, Sulfonation of hydroxymethylated lignin and its application, J. Bioresour. Bioprod., 4 (2019) 80–88.
  22. S. Sabar, H. Abdul Aziz, N.H. Yusof, S. Subramaniam, K.Y. Foo, L.D. Wilson, H.K. Lee, Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution, React. Funct. Polym., 151 (2020) 104584, doi: 10.1016/j.reactfunctpolym.2020.104584.
  23. P.J. Van Soest, Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin, J. Assoc. Off. Anal. Chem., 46 (1963) 829–835.
  24. K.F.L. Hagesteijn, S. Jiang, B.P. Ladewig, A review of the synthesis and characterization of anion exchange membranes, J. Mater. Sci., 53 (2018) 11131–11150.
  25. H.J. Choi, Assessment of the adsorption kinetics, equilibrium, and thermodynamic for Pb(II) removal using a low‐cost hybrid biowaste adsorbent, eggshell/coffee ground/sericite, Water Environ. Res., 91 (2019) 1600–1612.
  26. T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li, T.V. Nguyen, Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater, Bioresour. Technol., 148 (2013) 574–585.
  27. H.J. Choi, Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution, Water Sci. Technol., 79 (2019) 1922–1933.
  28. S. Suganuma, K. Nakajima, M. Kitano, H. Kato, A. Tamura, H. Kondo, S. Yanagawa, S. Hayashi, M. Hara,
    SO3H-bearing mesoporous carbon with highly selective catalysis, Microporous Mesoporous Mater.,
    143 (2011) 443–450.
  29. H.J. Choi, S.W. Yu, Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob, Environ. Eng. Res., 24 (2019) 99–106.
  30. M.R. Lasheen, N.S. Ammar, H.S. Ibrahim, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies, Solid State Sci., 14 (2012) 202–210.
  31. S.W. Yu, H.J. Choi, Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions, Water Sci. Technol., 78 (2018) 837–847.
  32. A. Ämmälä, O. Laitinen, J.A. Sirviö, H. Liimatainen, Key role of mild sulfonation of pine sawdust in the production of lignin containing microfibrillated cellulose by ultrafine wet grinding, Ind. Crops Prod., 140 (2019) 11166,. doi: 10.1016/j. indcrop.2019.111664.
  33. S.Y. Lee, H.J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manage., 209 (2018) 382–392.
  34. H.E. Osman, R.K. Badwy, H.K. Ahmad, Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater, J. Phytol., 2 (2010) 51–62.
  35. P.S. Kumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, A. Murugesan, S. Sivanesan, Removal of cadmium(II) from aqueous solution by agricultural waste cashew nut shell, Korean J. Chem. Eng., 29 (2012) 756–768.