References

  1. W. Miled, A.H. Said, S. Roudesli, Decolorization of high polluted textile wastewater by indirect electrochemical oxidation process, J. Text. Apparel Technol. Manage., 6 (2010) 1–6.
  2. H. Yin, P. Qiu, Y. Qian, Z. Kong, X. Zheng, Z. Tang, H. Guo, Textile wastewater treatment for water reuse: a case study, Processes, 7 (2019) 34, doi: 10.3390/pr7010034.
  3. S.H. Lin, C.F. Peng, Treatment of textile wastewater by electrochemical method, Water Res., 28 (1994) 277–282.
  4. S. Nasir, T.B. Sarfaraz, K.M. Khan, A. Aleem, R. Parveen, Synthesis, colorfastness evaluation and utilization of humic acid derived dyes/pigment, J. Chil. Chem. Soc., 56 (2011) 559–565.
  5. A.F. Little, R.M. Christie, Textile applications of photochromic dyes. Part 3: factors affecting the technical performance of textiles screen‐printed with commercial photochromic dyes, Color Technol., 127 (2011) 275–281.
  6. M.A. Shahid, M.I. Hossain, D. Hossain, A. Ali, Effect of different dyeing parameters on color strength and fastness properties of cotton-elastane (CE) and lyocell-elastane (LE) knit fabric, Int. J. Text. Sci., 5 (2016) 1–7.
  7. K. Siddique, M. Rizwan, M.J. Shahid, S. Ali, R. Ahmad, H. Rizvi, Textile Wastewater Treatment Options: A Critical Review, N. Anjum, S. Gill, N. Tuteja, Eds., Enhancing Cleanup of Environmental Pollutants, Springer, Cham, 2017, pp. 183–207.
  8. A.E. Ghaly, R. Ananthashankar, M.V.V.R. Alhattab, V.V. Ramakrishnan, Production, characterization and treatment of textile effluents: a critical review, J. Chem. Eng. Process Technol., 5 (2014) 1–19.
  9. A. Mittal, Biological wastewater treatment, Water Today, 1 (2011) 32–44.
  10. K. Sarayu, S. Sandhya, Current technologies for biological treatment of textile wastewater–a review, Appl. Biochem. Biotechnol., 167 (2012) 645–661.
  11. F. Bouatay, S. Boussaid, N. Drira, M.F. Mhenni, Neutralization of textile wastewater using carbon dioxide, IJARTex, 3 (2015) 22–31.
  12. B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture, J. CO2 Util., 1 (2013) 69–87.
  13. K. Paździor, L. Bilińska, S. Ledakowicz, A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment, Chem. Eng. J., 376 (2019) 120597, doi: 10.1016/j.cej.2018.12.057.
  14. M. Sala, M.C. Gutiérrez-Bouzán, Electrochemical techniques in textile processes and wastewater treatment, Int. J. Photoenergy, 2012 (2012), doi: 10.1155/2012/629103.
  15. K. Singh, S. Arora, Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies, Crit. Rev. Env. Sci. Technol., 41 (2011) 807–878.
  16. N. Barrak, R. Mannai, M. Zaidi, S. Achour, M. Kechida, A.N. Helal, Optimization of Novacron Blue 4R (NB4R) removal by adsorption process on activated carbon using response surface methodology, Desal. Water Treat., 104 (2018) 346–353.
  17. S. Arslan, M. Eyvaz, E. Gürbulak, E. Yüksel, Chapter 1 – A Review of State-of-the-Art Technologies in Dye-Containing Wastewater Treatment – The Textile Industry Case, Balaban IntechOpen, Text. Wastewater Treat, 2016, pp. 1–29.
  18. A. Asha, A. Muthukrishnaraj, N. Balasubramanian, Improvement of biodegradability index through electrocoagulation and advanced oxidation process, Int. J. Ind. Chem., 5 (2014) 4, doi: 10.1201/b18617-15.
  19. M. Habibian, M. Pazouki, H. Ghanaie, K. Abbaspour-Sani, Application of hydrocyclone for removal of yeasts from alcohol fermentations broth, Chem. Eng. J., 138 (2008) 30–34.
  20. S.K. Gupta, K. Dhandayuthapani, F.A. Ansari, Chapter 19 – Techno-Economic Perspectives of Bioremediation of Wastewater, Dewatering, and Biofuel Production From Microalgae: An Overview, V.C. Pandey, K. Bauddh, Eds., Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation, Elsevier, 2019, pp. 471–499.
  21. J. Bayo, J. López-Castellanos, R. Martínez-García, A. Alcolea, C. Lardín, Hydrocyclone as a cleaning device for anaerobic sludge digesters in a wastewater treatment plant, J. Cleaner Prod., 87 (2015) 550–557.
  22. R.A. Medronho, J. Schuetze, W.D. Deckwer, Numerical simulation of hydrocyclones for cell separation, Lat. Am. Appl. Res., 35 (2005) 1–8.
  23. E. Ortega‐Rivas, Applications of the liquid cyclone in biological separations, Eng. Life Sci., 4 (2004) 119–123.
  24. K.W. Chu, J. Chen, B. Wang, A.B. Yu, A. Vince, G.D. Barnett, P.J. Barnett, Understand solids loading effects in a dense medium cyclone: effect of particle size by a CFD-DEM method, Powder Technol., 320 (2017) 594–609.
  25. J. Tian, L. Ni, T. Song, J. Olson, J. Zhao, An overview of operating parameters and conditions in hydrocyclones for enhanced separations, Sep. Purif. Technol., 206 (2018) 268–285.
  26. R. Gupta, M.D. Kaulaskar, V. Kumar, R. Sripriya, B.C. Meikap, S. Chakraborty, Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone, Chem. Eng. J., 144 (2008) 153–166.
  27. M.E. Caliskan, I. Karagoz, A. Avci, A. Surmen, An experimental investigation into the particle classification capability of a novel cyclone separator, Sep. Purif. Technol., 209 (2019) 908–913.
  28. A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon – a critical review, Chemosphere, 58 (2005) 1049–1070.
  29. G. Crini, P.M. Badot, Eds., Sorption Processes and Pollution: Conventional and Non-Conventional Sorbents for Pollutant Removal from Wastemasters, Presses Univ., Franche-Comté, 2011.
  30. G.Z. Kyzas, M. Kostoglou, Green adsorbents for wastewaters: a critical review, Materials, 7 (2014) 333–364.
  31. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  32. D. Swami, D. Buddhi, Removal of contaminants from industrial wastewater through various non-conventional technologies: a review, Int. J. Environ. Pollut., 27 (2006) 324–346.
  33. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  34. K. Vijayaraghavan, Y.S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv., 26 (2008) 266–291.
  35. G.M. Gadd, Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment, J. Chem. Technol. Biotechnol: Int. Res. Process Environ. Clean Technol., 84 (2009) 13–28.
  36. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Adsorption-Oriented Processes Using Conventional and Non-Conventional Adsorbents for Wastewater Treatment, G. Crini, E. Lichtfouse, Eds., Green Adsorbents for Pollutant Removal, Springer. Cham, 2018, pp. 23–71.
  37. G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci., 30 (2005) 38–70.
  38. D. Park, Y.S. Yun, J.M. Park, The past, present, and future trends of biosorption, Biotechnol. Bioprocess Eng., 15 (2010) 86–102.
  39. N.G. Asenjo, P. Álvarez, M. Granda, C. Blanco, R. Santamaría, R. Menéndez, High performance activated carbon for benzene/toluene adsorption from industrial wastewater, J. Hazard. Mater., 192 (2011) 1525–1532.
  40. G.Z. Kyzas, J. Fu, K.A. Matis, The change from past to future for adsorbent materials in treatment of dyeing wastewaters, Materials, 6 (2013) 5131–5158.
  41. S. Wang, Z.H. Zhu, A. Coomes, F. Haghseresht, G.Q. Lu, The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater, J. Colloid. Interface Sci., 284 (2005) 440–446.
  42. T. Karanfil, S.A. Dastgheib, D. Mauldin, Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption, Environ. Sci. Technol., 40 (2006) 1321–1327.
  43. H. Kose, The Effects of Physical Factors on the Adsorption of Synthetic Organic Compounds by Activated Carbons and Activated Carbon Fibers, Thesis, 2010.
  44. H. Patel, Charcoal as an adsorbent for textile wastewater treatment, Sep. Sci. Technol., 53 (2018) 2797–2812.
  45. C. Puprasert, G. Hebrard, L. Lopez, Y. Aurelle, Potential of using hydrocyclone and hydrocyclone equipped with Grit pot as a pre-treatment in run-off water treatment, Chem. Eng. Process. Process Intensif., 43 (2004) 67–83.
  46. M.R. Samarghandi, E. Hoseinzade, M. Taghavi, A. Rahmani, Biosorption of reactive Black 5 from aqueous solution using acid-treated biomass from potato peel waste, Bioresources, 6 (2011) 4840–4855.
  47. T. Mathialagan, T. Viraraghavan, Biosorption of pentachlorophenol by fungal biomass from aqueous solutions: a factorial design analysis, Environ. Technol., 26 (2005) 571–580.
  48. J.C. Cullivan, R.A. Williams, T. Dyakowski, C.R. Cross, New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics, Miner. Eng., 17 (2004) 651–660.
  49. K. Rastogi, J.N. Sahu, B.C. Meikap, M.N. Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, J. Hazard. Mater., 158 (2008) 531–540.
  50. A.K. Mukherjee, R. Sripriya, P.V.T. Rao, P. Das, Effect of increase in feed inlet pressure on feed rate of dense media cyclone, Int. J. Miner. Process., 69 (2003) 259–274.
  51. L.R. Plitt, B.C. Flintoff, T.J. Stuffco, Roping in Hydrocyclones, P. Wood, Ed., In Proc. 3rd Int. Conf. Hydrocyclones, BHRA, Oxford, Elsevier, 1987, pp. 21–34.
  52. T. Neesse, M. Schneider, V. Golyk, H. Tiefel, Measuring the operating state of the hydrocyclone, Miner. Eng., 17 (2004) 697–703.
  53. F. Concha, A. Barrientos, J. Montero, R. Sampaio, Air core and roping in hydrocyclones, Int. J. Miner. Process., 44 (1996) 743–749.
  54. S.K. Kawatra, A.K. Bakshi, M.T. Rusesky, Effect of viscosity on the cut (d50) size of hydrocyclone classifiers, Miner. Eng., 9 (1996) 881–891.
  55. N. Otto, S. Platz, T. Fink, M. Wutscherk, U. Menzel, Removal of micropollutants with coarse-ground activated carbon for enhanced separation with hydrocyclone classifiers, Water Sci. Technol., 73 (2016) 2739–2746.
  56. S. Mohanty, B. Das, Optimization studies of hydrocyclone for beneficiation of iron ore slimes, Miner. Process. Extr. Metall. Rev., 31 (2010) 86–96.
  57. A. Alves, J. Paiva, R. Salcedo, Cyclone optimization including particle clustering, Powder Technol., 272 (2015) 14–22.
  58. G. Derringer, R. Suich, Simultaneous optimization of several response variables, J. Qual. Technol., 12 (1980) 214–219.
  59. D. Bradley, The Hydrocyclone, Pergammon Press, London, 1965, p. 330.
  60. K.J. Hwang, Y.W. Hwang, H. Yoshida, Design of novel hydrocyclone for improving fine particle separation using computational fluid dynamics, Chem. Eng. Sci., 85 (2013) 62–68.