References

  1. N. Hassan, A. Shahat, A. El-Didamony, M.G. El-Desouky, A.A. El-Bindary, Synthesis and characterization of ZnO nanoparticles via zeolitic imidazolate framework-8 and its application for removal of dyes, J. Mol. Struct., 1210 (2020) 128029, doi: 10.1016/j.molstruc.2020.128029.
  2. H. An, Y. Qian, X. Gu, W.Z. Tang, Biological treatment of dye wastewaters using an anaerobic-oxic system, Chemosphere, 33 (1996) 2533–2542.
  3. R. Anliker, Ecotoxicology of dyestuffs—a joint effort by industry, Ecotoxicol. Environ. Saf., 3 (1979) 59–74.
  4. M.A. Brown, S.C. De Vito, Predicting azo dye toxicity, Crit. Rev. Env. Sci. Technol., 23 (1993) 249–324.
  5. K.S. Abou-Melha, G.A.A. Al-Hazmi, I. Althagafi, R. Shah, F. Shaaban, N.M. El-Metwaly, A.A. El-Bindary, Preparation of CuO nanoparticles via organometallic chelate for the removal of acid red 57 from aqueous solutions, Desal. Water Treat., 222 (2021) 282–294.
  6. M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis, Sci. Total Environ., 760 (2021) 143333, doi: 10.1016/j.scitotenv.2020.143333.
  7. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  8. X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu, B. Hu, H. Yang, X. Wang, Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions, Innovation, 2 (2021) 100076, doi: 10.1016/j.xinn.2021.100076.
  9. R.W. Matthews, Photooxidative degradation of coloured organics in water using supported catalysts TiO2 on sand, Water Res., 25 (1991) 1169–1176.
  10. A.K. Ray, A.A.C.M. Beenackers, Development of a new photocatalytic reactor for water purification, Catal. Today, 40 (1998) 73–83.
  11. K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic degradation of commercial azo dyes, Water Res., 34 (2000) 327–333.
  12. H.A. Kiwaan, F.S. Mohamed, N.A. El-Ghamaz, N.M. Beshry, A.A. El-Bindary, Experimental and electrical studies of Na-X zeolite for the adsorption of different dyes, J. Mol. Liq., 332 (2021) 115877,
    doi: 10.1016/j.molliq.2021.115877.
  13. C. Tang, V. Chen, The photocatalytic degradation of reactive black 5 using TiO2/UV in an annular photoreactor, Water Res., 38 (2004) 2775–2781.
  14. A.Z. El-Sonbati, I.M. El-Deen, M.A. El-Bindary, Adsorption of hazardous azorhodanine dye from an aqueous solution using rice straw fly ash, J. Dispersion Sci. Technol., 37 (2016) 715–722.
  15. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide, J. Hazard. Mater., 136 (2006) 85–94.
  16. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters, J. Photochem. Photobiol., A, 157 (2003) 111–116.
  17. S. Ledakowicz, M. Gonera, Optimisation of oxidants dose for combined chemical and biological treatment of textile wastewater, Water Res., 33 (1999) 2511–2516.
  18. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B, 31 (2001) 145–157.
  19. L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, X. Wang, Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater, Chemosphere, 273 (2021) 128576,
    doi: 10.1016/j.chemosphere.2020.128576.
  20. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  21. J. Grzechulska, A.W. Morawski, Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide, Appl. Catal., B, 36 (2002) 45–51.
  22. S.P. Patil, V.S. Shrivastava, G.H. Sonawane, S.H. Sonawane, Synthesis of novel Bi2O3–montmorillonite nanocomposite with enhanced photocatalytic performance in dye degradation, J. Environ. Chem. Eng., 3 (2015) 2597–2603.
  23. Nasikhudin, M. Diantoro, A. Kusumaatmaja, K. Triyana, Study on photocatalytic properties of TiO2 nanoparticle in various pH condition, J. Phys. Conf. Ser., 1011 (2018) 012069.
  24. J.P. Lorimer, T.J. Mason, M. Plattes, S.S. Phull, D.J. Walton, Degradation of dye effluent, Pure Appl. Chem.,
    73 (2001) 1957–1968.
  25. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the hazardous dye Rhodamine B through photocatalytic and adsorption treatments, J. Environ. Manage., 85 (2007) 956–964.
  26. S.M.I. Morsy, S.A. Shaban, A.M. Ibrahim, M.M. Selim, Characterization of cobalt oxide nanocatalysts prepared by microemulsion with different surfactants, reduction by hydrazine and mechanochemical method, J. Alloys Compd., 486 (2009) 83–87.
  27. S.Y. Lee, D. Kang, S. Jeong, H.T. Do, J.H. Kim, Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation, ACS Omega, 5 (2020) 4233–4241.
  28. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, Efficient photocatalytic degradation of Acid Red 57 using synthesized ZnO nanowires, J. Chin. Chem. Soc., 66 (2019) 89–98.
  29. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  30. Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, K. Ostrikov, Oxygen vacancy-mediated ZnO nanoparticle photocatalyst for degradation of methylene blue, Appl. Sci., 8 (2018) 353, doi: 10.3390/app8030353.
  31. A. Jain, D. Vaya, Photocatalytic activity of TiO2 nanomaterial, J. Chil. Chem. Soc., 62 (2017) 3683–3690.
  32. K. Fischer, P. Schulz, I. Atanasov, A. Abdul Latif, I. Thomas, M. Kühnert, A. Prager, J. Griebel, A. Schulze, Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water, Catalysts, 8 (2018) 376, doi: 10.3390/catal8090376.
  33. L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst, Environ. Sci. Technol., 44 (2010) 7641–7646.
  34. A.L. Patterson, The Scherrer formula for X-ray particle size determination, Phys. Rev., 56 (1939) 978–982.
  35. A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra, A. Agarwal, Study of structural transformation in TiO2 nanoparticles and its optical properties, J. Alloys Compd., 549 (2013) 114–120.
  36. P. Reeves, R. Ohlhausen, D. Sloan, K. Pamplin, T. Scoggins, C. Clark, B. Hutchinson, D. Green, Photocatalytic destruction of organic dyes in aqueous TiO2 suspensions using concentrated simulated and natural solar energy, Sol. Energy, 48 (1992) 413–420.
  37. O.R. Fonseca-Cervantes, A. Pérez-Larios, V.H. Romero Arellano, B. Sulbaran-Rangel, C.A. Guzmán González, Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium, Processes, 8 (2020) 1032, doi: 10.3390/pr8091032.
  38. S. Singh, S. Kumar, Investigation of optical constants and optical band gap for amorphous Se40–xTe60Agx thin films, Chalcogenide Lett., 14 (2017) 139–146.
  39. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide, J. Mol. Struct., 1200 (2020) 127115,
    doi: 10.1016/j.molstruc.2019.127115.
  40. G. Li, B.-D. Wang, Q. Sun, W.-Q. Xu, Y.-F. Han, Visible-light photocatalytic activity of Fe and/or Ni doped ilmenite derivedtitanium dioxide nanoparticles, J. Nanosci. Nanotechnol., 19 (2019) 3343–3355.
  41. A.A. El-Bindary, S.M. El-Marsafy, A.A. El-Maddah, Enhancement of the photocatalytic activity of ZnO nanoparticles by silver doping for the degradation of AY99 contaminants, J. Mol. Struct., 1191 (2019) 76–84.
  42. E.E. El-Katori, M.A. Ahmed, A.A. El-Bindary, A.M. Oraby, Impact of CdS/SnO2 heterostructured nanoparticle as visible light active photocatalyst for the removal methylene blue dye, J. Photochem. Photobiol., A, 392 (2020) 112403, doi: 10.1016/j. jphotochem.2020.112403.
  43. M.M. Haque, M. Muneer, TiO2-mediated photocatalytic degradation of a textile dye derivative, bromothymol blue, in aqueous suspensions, Dyes Pigm., 75 (2007) 443–448.
  44. M. Zarei, D. Salari, A. Niaei, A. Khataee, Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode, Electrochim. Acta, 54 (2009) 6651–6660.
  45. G. Tafurt-García, L. Copete-Pertuz, M.S. Pérez-Grisales, A.L. Mora-Martínez, G. Correa Londoño,
    M. Castrillón-Tobón, Decolorization of Reactive Black 5 dye by heterogeneous photocatalysis with TiO2/UV, Rev. Colomb. Química, 47 (2018) 36–44.
  46. K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2:
    a review, Appl. Water Sci., 7 (2017) 1569–1578.
  47. S. Chitra, K. Paramasivan, P.K. Sinha, K.B. Lal, Ultrasonic treatment of liquid waste containing EDTA, J. Cleaner Prod., 12 (2004) 429–435.
  48. X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Crit. Rev. Env. Sci. Technol., 51 (2021) 751–790.
  49. M.F. Abid, A.A. Abdulrahman, N.H. Hamza, Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment, J. Environ. Health Sci. Eng., 12 (2014) 145, doi: 10.1186/s40201-014-0145-z.
  50. R. Singh, S. Dutta, Synthesis and characterization of solar photoactive TiO2 nanoparticles with enhanced structural and optical properties, Adv. Powder Technol., 29 (2018) 211–219.
  51. L. Wu, Q. Xie, Y. Lv, Z. Zhang, Z. Wu, X. Liang, M. Lu, Y. Nie, Degradation of methylene blue by dielectric barrier discharge plasma coupled with activated carbon supported on polyurethane foam, RSC Adv., 9 (2019) 25967–25975.
  52. P.K. Dutta, A.K. Ray, Experimental investigation of Taylor vortex photocatalytic reactor for water purification, Chem. Eng. Sci., 59 (2004) 5249–5259.
  53. A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes, J. Mol. Catal. A: Chem., 328 (2010) 8–26.
  54. B.A. van Driel, P.J. Kooyman, K.J. van den Berg, A. Schmidt-Ott, J. Dik, A quick assessment of the photocatalytic activity of TiO2 pigments — from lab to conservation studio!, Microchem. J., 126 (2016) 162–171.
  55. Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, Photocatalytic activity of TiO2 nanoparticles: a theoretical aspect, J. Mater. Chem. A, 7 (2019) 13833–13859.
  56. A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marcì, L. Palmisano, Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions, Environ. Sci. Technol., 35 (2001) 971–976.
  57. C. Galindo, P. Jacques, A. Kalt, Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: comparative mechanistic and kinetic investigations, J. Photochem. Photobiol., A, 130 (2000) 35–47.
  58. N. Guettaï, H. Ait Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study, Desalination, 185 (2005) 427–437.
  59. H.A. Kiwaan, F.Sh. Mohamed, N.A. El-Ghamaz, N.M. Beshry, A.A. El-Bindary, Experimental and electrical studies of zeolitic imidazolate framework-8 for the adsorption of different dyes, J. Mol. Liq., 338 (2021) 116670,
    doi: 10.1016/j.molliq.2021.116670.
  60. X.H. Lin, S.N. Lee, W. Zhang, S.F.Y. Li, Photocatalytic degradation of terephthalic acid on sulfated titania particles and identification of fluorescent intermediates, J. Hazard. Mater., 303 (2016) 64–75.