References
- N. Hassan, A. Shahat, A. El-Didamony, M.G. El-Desouky, A.A.
El-Bindary, Synthesis and characterization of ZnO nanoparticles
via zeolitic imidazolate framework-8 and its application
for removal of dyes, J. Mol. Struct., 1210 (2020) 128029, doi:
10.1016/j.molstruc.2020.128029.
- H. An, Y. Qian, X. Gu, W.Z. Tang, Biological treatment of dye
wastewaters using an anaerobic-oxic system, Chemosphere,
33 (1996) 2533–2542.
- R. Anliker, Ecotoxicology of dyestuffs—a joint effort by
industry, Ecotoxicol. Environ. Saf., 3 (1979) 59–74.
- M.A. Brown, S.C. De Vito, Predicting azo dye toxicity, Crit. Rev.
Env. Sci. Technol., 23 (1993) 249–324.
- K.S. Abou-Melha, G.A.A. Al-Hazmi, I. Althagafi, R. Shah,
F. Shaaban, N.M. El-Metwaly, A.A. El-Bindary, Preparation of
CuO nanoparticles via organometallic chelate for the removal
of acid red 57 from aqueous solutions, Desal. Water Treat.,
222 (2021) 282–294.
- M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Recent advances on
preparation and environmental applications of MOF-derived
carbons in catalysis, Sci. Total Environ., 760 (2021) 143333,
doi: 10.1016/j.scitotenv.2020.143333.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and
mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
- X. Liu, H. Pang, X. Liu, Q. Li, N. Zhang, L. Mao, M. Qiu,
B. Hu, H. Yang, X. Wang, Orderly porous covalent organic
frameworks-based materials: superior adsorbents for pollutants
removal from aqueous solutions, Innovation, 2 (2021) 100076,
doi: 10.1016/j.xinn.2021.100076.
- R.W. Matthews, Photooxidative degradation of coloured
organics in water using supported catalysts TiO2 on sand,
Water Res., 25 (1991) 1169–1176.
- A.K. Ray, A.A.C.M. Beenackers, Development of a new
photocatalytic reactor for water purification, Catal. Today,
40 (1998) 73–83.
- K. Tanaka, K. Padermpole, T. Hisanaga, Photocatalytic
degradation of commercial azo dyes, Water Res., 34 (2000)
327–333.
- H.A. Kiwaan, F.S. Mohamed, N.A. El-Ghamaz, N.M. Beshry,
A.A. El-Bindary, Experimental and electrical studies of
Na-X zeolite for the adsorption of different dyes, J. Mol. Liq.,
332 (2021) 115877,
doi: 10.1016/j.molliq.2021.115877.
- C. Tang, V. Chen, The photocatalytic degradation of reactive
black 5 using TiO2/UV in an annular photoreactor, Water Res.,
38 (2004) 2775–2781.
- A.Z. El-Sonbati, I.M. El-Deen, M.A. El-Bindary, Adsorption of
hazardous azorhodanine dye from an aqueous solution using
rice straw fly ash, J. Dispersion Sci. Technol., 37 (2016) 715–722.
- E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic
decolorization and degradation of dye solutions and
wastewaters in the presence of titanium dioxide, J. Hazard.
Mater., 136 (2006) 85–94.
- N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic
degradation of azo dye acid red 14 in water: investigation of the
effect of operational parameters, J. Photochem. Photobiol., A,
157 (2003) 111–116.
- S. Ledakowicz, M. Gonera, Optimisation of oxidants dose
for combined chemical and biological treatment of textile
wastewater, Water Res., 33 (1999) 2511–2516.
- A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard,
J.-M. Herrmann, Photocatalytic degradation pathway of
methylene blue in water, Appl. Catal., B, 31 (2001) 145–157.
- L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, X. Wang, Bismuth
oxychloride-based materials for the removal of organic
pollutants in wastewater, Chemosphere, 273 (2021) 128576,
doi: 10.1016/j.chemosphere.2020.128576.
- O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity
of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
- J. Grzechulska, A.W. Morawski, Photocatalytic decomposition
of azo-dye acid black 1 in water over modified titanium dioxide,
Appl. Catal., B, 36 (2002) 45–51.
- S.P. Patil, V.S. Shrivastava, G.H. Sonawane, S.H. Sonawane,
Synthesis of novel Bi2O3–montmorillonite nanocomposite with
enhanced photocatalytic performance in dye degradation,
J. Environ. Chem. Eng., 3 (2015) 2597–2603.
- Nasikhudin, M. Diantoro, A. Kusumaatmaja, K. Triyana, Study
on photocatalytic properties of TiO2 nanoparticle in various
pH condition, J. Phys. Conf. Ser., 1011 (2018) 012069.
- J.P. Lorimer, T.J. Mason, M. Plattes, S.S. Phull, D.J. Walton,
Degradation of dye effluent, Pure Appl. Chem.,
73 (2001)
1957–1968.
- R. Jain, M. Mathur, S. Sikarwar, A. Mittal, Removal of the
hazardous dye Rhodamine B through photocatalytic and
adsorption treatments, J. Environ. Manage., 85 (2007) 956–964.
- S.M.I. Morsy, S.A. Shaban, A.M. Ibrahim, M.M. Selim,
Characterization of cobalt oxide nanocatalysts prepared
by microemulsion with different surfactants, reduction by
hydrazine and mechanochemical method, J. Alloys Compd.,
486 (2009) 83–87.
- S.Y. Lee, D. Kang, S. Jeong, H.T. Do, J.H. Kim, Photocatalytic
degradation of rhodamine B dye by TiO2 and gold nanoparticles
supported on a floating porous polydimethylsiloxane sponge
under ultraviolet and visible light irradiation, ACS Omega,
5 (2020) 4233–4241.
- H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, Efficient
photocatalytic degradation of Acid Red 57 using synthesized
ZnO nanowires, J. Chin. Chem. Soc., 66 (2019) 89–98.
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in
multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
- Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, K. Ostrikov,
Oxygen vacancy-mediated ZnO nanoparticle photocatalyst
for degradation of methylene blue, Appl. Sci., 8 (2018) 353,
doi: 10.3390/app8030353.
- A. Jain, D. Vaya, Photocatalytic activity of TiO2 nanomaterial,
J. Chil. Chem. Soc., 62 (2017) 3683–3690.
- K. Fischer, P. Schulz, I. Atanasov, A. Abdul Latif, I. Thomas,
M. Kühnert, A. Prager, J. Griebel, A. Schulze, Synthesis of
high crystalline TiO2 nanoparticles on a polymer membrane
to degrade pollutants from water, Catalysts, 8 (2018) 376,
doi: 10.3390/catal8090376.
- L. Yang, S. Luo, Y. Li, Y. Xiao, Q. Kang, Q. Cai, High efficient
photocatalytic degradation of p-nitrophenol on a unique
Cu2O/TiO2 p-n heterojunction network catalyst, Environ. Sci.
Technol., 44 (2010) 7641–7646.
- A.L. Patterson, The Scherrer formula for X-ray particle size
determination, Phys. Rev., 56 (1939) 978–982.
- A.K. Tripathi, M.K. Singh, M.C. Mathpal, S.K. Mishra,
A. Agarwal, Study of structural transformation in TiO2
nanoparticles and its optical properties, J. Alloys Compd.,
549 (2013) 114–120.
- P. Reeves, R. Ohlhausen, D. Sloan, K. Pamplin, T. Scoggins, C. Clark,
B. Hutchinson, D. Green, Photocatalytic destruction of organic
dyes in aqueous TiO2 suspensions using concentrated simulated
and natural solar energy, Sol. Energy, 48 (1992) 413–420.
- O.R. Fonseca-Cervantes, A. Pérez-Larios, V.H. Romero Arellano,
B. Sulbaran-Rangel, C.A. Guzmán González, Effects in band
gap for photocatalysis in TiO2 support by adding gold and
ruthenium, Processes, 8 (2020) 1032, doi: 10.3390/pr8091032.
- S. Singh, S. Kumar, Investigation of optical constants and
optical band gap for amorphous Se40–xTe60Agx thin films,
Chalcogenide Lett., 14 (2017) 139–146.
- H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary,
Photocatalytic degradation of organic dyes in the presence of
nanostructured titanium dioxide, J. Mol. Struct., 1200 (2020)
127115,
doi: 10.1016/j.molstruc.2019.127115.
- G. Li, B.-D. Wang, Q. Sun, W.-Q. Xu, Y.-F. Han, Visible-light
photocatalytic activity of Fe and/or Ni doped ilmenite derivedtitanium
dioxide nanoparticles, J. Nanosci. Nanotechnol.,
19 (2019) 3343–3355.
- A.A. El-Bindary, S.M. El-Marsafy, A.A. El-Maddah,
Enhancement of the photocatalytic activity of ZnO nanoparticles
by silver doping for the degradation of AY99
contaminants, J. Mol. Struct., 1191 (2019) 76–84.
- E.E. El-Katori, M.A. Ahmed, A.A. El-Bindary, A.M. Oraby,
Impact of CdS/SnO2 heterostructured nanoparticle as visible
light active photocatalyst for the removal methylene blue dye,
J. Photochem. Photobiol., A, 392 (2020) 112403, doi: 10.1016/j.
jphotochem.2020.112403.
- M.M. Haque, M. Muneer, TiO2-mediated photocatalytic
degradation of a textile dye derivative, bromothymol blue,
in aqueous suspensions, Dyes Pigm., 75 (2007) 443–448.
- M. Zarei, D. Salari, A. Niaei, A. Khataee, Peroxi-coagulation
degradation of C.I. Basic Yellow 2 based on carbon-PTFE and
carbon nanotube-PTFE electrodes as cathode, Electrochim.
Acta, 54 (2009) 6651–6660.
- G. Tafurt-García, L. Copete-Pertuz, M.S. Pérez-Grisales,
A.L. Mora-Martínez, G. Correa Londoño,
M. Castrillón-Tobón,
Decolorization of Reactive Black 5 dye by heterogeneous
photocatalysis with TiO2/UV, Rev. Colomb. Química, 47 (2018)
36–44.
- K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the
photocatalytic degradation of dyes using TiO2:
a review, Appl.
Water Sci., 7 (2017) 1569–1578.
- S. Chitra, K. Paramasivan, P.K. Sinha, K.B. Lal, Ultrasonic
treatment of liquid waste containing EDTA, J. Cleaner Prod.,
12 (2004) 429–435.
- X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang,
Recent developments of doped g-C3N4 photocatalysts for the
degradation of organic pollutants, Crit. Rev. Env. Sci. Technol.,
51 (2021) 751–790.
- M.F. Abid, A.A. Abdulrahman, N.H. Hamza, Hydrodynamic
and kinetic study of a hybrid detoxification process with zero
liquid discharge system in an industrial wastewater treatment,
J. Environ. Health Sci. Eng., 12 (2014) 145, doi: 10.1186/s40201-014-0145-z.
- R. Singh, S. Dutta, Synthesis and characterization of solar
photoactive TiO2 nanoparticles with enhanced structural and
optical properties, Adv. Powder Technol., 29 (2018) 211–219.
- L. Wu, Q. Xie, Y. Lv, Z. Zhang, Z. Wu, X. Liang, M. Lu,
Y. Nie, Degradation of methylene blue by dielectric barrier
discharge plasma coupled with activated carbon supported
on polyurethane foam, RSC Adv., 9 (2019) 25967–25975.
- P.K. Dutta, A.K. Ray, Experimental investigation of Taylor
vortex photocatalytic reactor for water purification, Chem.
Eng. Sci., 59 (2004) 5249–5259.
- A.R. Khataee, M.B. Kasiri, Photocatalytic degradation of organic
dyes in the presence of nanostructured titanium dioxide:
influence of the chemical structure of dyes, J. Mol. Catal. A:
Chem., 328 (2010) 8–26.
- B.A. van Driel, P.J. Kooyman, K.J. van den Berg, A. Schmidt-Ott, J. Dik, A quick assessment of the photocatalytic activity of
TiO2 pigments — from lab to conservation studio!, Microchem.
J., 126 (2016) 162–171.
- Y. Nam, J.H. Lim, K.C. Ko, J.Y. Lee, Photocatalytic activity of
TiO2 nanoparticles: a theoretical aspect, J. Mater. Chem. A,
7 (2019) 13833–13859.
- A.B. Prevot, C. Baiocchi, M.C. Brussino, E. Pramauro,
P. Savarino, V. Augugliaro, G. Marcì, L. Palmisano, Photocatalytic
degradation of acid blue 80 in aqueous solutions
containing TiO2 suspensions, Environ. Sci. Technol., 35 (2001)
971–976.
- C. Galindo, P. Jacques, A. Kalt, Photodegradation of the
aminoazobenzene acid orange 52 by three advanced oxidation
processes: UV/H2O2, UV/TiO2 and VIS/TiO2: comparative
mechanistic and kinetic investigations, J. Photochem. Photobiol.,
A, 130 (2000) 35–47.
- N. Guettaï, H. Ait Amar, Photocatalytic oxidation of methyl
orange in presence of titanium dioxide in aqueous suspension.
Part I: Parametric study, Desalination, 185 (2005) 427–437.
- H.A. Kiwaan, F.Sh. Mohamed, N.A. El-Ghamaz, N.M. Beshry,
A.A. El-Bindary, Experimental and electrical studies of zeolitic
imidazolate framework-8 for the adsorption of different dyes,
J. Mol. Liq., 338 (2021) 116670,
doi: 10.1016/j.molliq.2021.116670.
- X.H. Lin, S.N. Lee, W. Zhang, S.F.Y. Li, Photocatalytic
degradation of terephthalic acid on sulfated titania particles
and identification of fluorescent intermediates, J. Hazard.
Mater., 303 (2016) 64–75.