References
- A. Shokri, Employing electrocoagulation for the removal of
Acid Red 182 in aqueous environment by using Box-Behenken
design method, Desal. Water Treat., 115 (2018) 281–287.
- A. Shokri, Removal of Acid red 33 from aqueous solution by
Fenton and photo Fenton processes,
J. Chem. Health Risks,
7 (2017) 119–131.
- H.L. Jiang, P.H. Chen, S.L. Luo, X.B. Luo, X.M. Tu, Q. Cao,
Y.L. Zhou, W.B. Zhang, Synthesis of novel biocompatible
composite Fe3O4/ZrO2/chitosan and its application for dye
removal, J. Inorg. Organomet., 23 (2013) 393–400.
- T.H. Wu, Q. Shao, S.S. Ge, L.W. Bao, Q.Y. Liu, The facile
preparation of novel magnetic zirconia composites with the aid
of carboxymethyl chitosan and their efficient removal of dye,
RSC Adv., 6 (2016) 58020–58027.
- Z. Feng, L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin, Y. He, In
situ preparation of g-C3N4/Bi4O5I2 complex and its elevated
photoactivity in Methyl Orange degradation under visible light,
J. Environ. Sci., 87 (2020) 149–162.
- Q. Zhang, P. Chen, L. Chen, M. Wu, X. Dai, P. Xing, H. Lin,
L. Zhao, Y. He, Facile fabrication of novel
Ag2S/K-g-C3N4
composite and its enhanced performance in photocatalytic H2
evolution, J. Colloid Interface Sci., 568 (2020) 117–129.
- Z. Fang, Q. Li, L. Su, J. Chen, K. Chou, X. Hou, Efficient synergy
of photocatalysis and adsorption of hexavalent chromium and
Rhodamine B over Al4SiC4/rGO hybrid photocatalyst under
visible-light irradiation, Appl. Catal., B, 241 (2019) 548–560.
- M. Mohadesi, A. Shokri, Treatment of oil refinery wastewater
by photo-Fenton process using Box–Behnken design method:
kinetic study and energy consumption, Int. J. Environ. Sci.
Technol., 16 (2019) 7349–7356.
- A. Shokri, Application of sono–photo-Fenton process for
degradation of phenol derivatives in petrochemical wastewater
using full factorial design of experiment, Int. J. Ind. Chem.,
9 (2018b) 295–303.
- A. Shokri, A kinetic study and application of electro Fenton
process for the remediation of the aqueous environment
containing toluene in a batch reactor, Russ. J. Appl. Chem.,
90 (2017) 452−457.
- M. Mohadesi, A. Shokri, Evaluation of Fenton and photo-Fenton
processes for the removal of p-chloronitrobenzene in aqueous
environment using Box–Behnken design method,
Desal. Water
Treat., 81 (2017) 199–208.
- S. Xing, S. Song, J. Xiang, Low temperature combustion
synthesis and photoluminescence mechanism of ZnO/ZnAl2O4
composite phosphors, Optik, 208 (2020) 164526, doi: 10.1016/j.
ijleo.2020.164526.
- P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing,
T.B. Rotamond, H. Lin, Y. Wu, Y. He, Microwave heating
preparation of phosphorus doped g-C3N4 and its enhanced
performance for photocatalytic H2 evolution in the help of
Ag3PO4 nanoparticles, Int. J. Hydrogen Energy, 45 (2020)
14354–14367.
- F.Z. Akika, M. Benamira, H.L. Ahmar, M. Trari, I.A. Vramova,
Ş. Suzer, Structural and optical properties of
Cu-doped ZnAl2O4
and its application as photocatalyst for Cr(VI) reduction under
sunlight, Surf. Interfaces, 18 (2020) 100406, doi: 10.1016/j.
surfin.2019.100406.
- P. Moradipour, F. Dabirian, M. Moradipour, Ternary ZnO/ZnAl2O4/Al2O3 composite nanofiber as photocatalyst for
conversion of CO2 and CH4, Ceram. Int., 46 (2020) 5566–5574.
- A. Shokri, K. Mahanpoor, D. Soodbar, Evaluation of a
modified TiO2 (GO–B–TiO2) photocatalyst for degradation of
4-nitrophenol in petrochemical wastewater by response surface
methodology based on the central composite design, J. Environ.
Chem. Eng., 4 (2016) 585–598.
- Z.F. Yin, C.J. Cui, H. Chen, Duoni, X. Yu, W.Z. Qian, The
application of carbon nanotube/graphene-based nanomaterials
in wastewater treatment, Nano/Microscale Mater., 16 (2019)
1902301, doi: 10.1002/smll.201902301.
- M. Taghioskoui, Trends in graphene research, Mater. Today,
12 (2009) 34–37.
- A.R. Oganov, R.J. Hemley, R.M. Hazen, A.P. Jones, Structure,
bonding, and mineralogy of carbon at extreme conditions, Rev.
Mineral. Geochem., 75 (2013) 47–77.
- L. Mu, J. Wan, Z. Wang, Y. Gao, Y. Qian, Mn-doped zinc aluminate
nanoparticles: hydrothermal synthesis, characterization, and
photoluminescence properties, J. Nanosci. Nanotechnol.,
6 (2006) 863–867.
- T. Charinpanitkul, P. Poommarin, A. Wongkaew, K.S. Kim,
Dependence of zinc aluminate microscopic structure on its
synthesis, J. Ind. Eng. Chem., 15 (2009) 163–166.
- S. Farhadi, S. Panahandehjoo, Spinel-type zinc aluminate
(ZnAl2O4) nanoparticles prepared
by the co-precipitation
method: a novel, green and recyclable heterogeneous catalyst
for the acetylation of amines, alcohols and phenols under
solvent-free conditions, Appl. Catal., A, 382 (2010) 293–302.
- A. Adan-Mas, D. Wei, Photoelectrochemical properties of
graphene and its derivatives, Nanomaterials,
3 (2013) 325–356.
- A.D. Ballarini, S.A. Bocanegra, A.A. Castro, S.R. De Miguel,
O.A. Scelza, Characterization of ZnAl2O4 obtained by different
methods and used as catalytic support of Pt, Catal. Lett.,
129 (2009) 293–302.
- Y. Wang, J. Liu, L. Liu, D.D. Sun, Enhancing stability and
photocatalytic activity of ZnO nanoparticles by surface
modification of graphene oxide, J. Nanosci. Nanotechnol.,
12 (2012) 3896–3902.
- S.F. Wang, G.Z. Sun, L.M. Fang, L. Lei, X. Xiang, X.T. Zu,
A comparative study of ZnAl2O4 nanoparticles synthesized
from different aluminium salts for use as fluorescence materials,
Sci. Rep., 5 (2015) 12849, doi: 10.1038/srep12849.
- K.R. Reddy, K.V. Karthik, S.B. Benaka Prasad, S.K. Soni,
H.M. Jeong, Enhanced photocatalytic activity of nanostructured
titanium dioxide/polyaniline hybrid photocatalysts, Polyhedron,
120 (2016) 169–174.
- M.R. Quirino, M.J.C. Oliveira, D. Keyson, G.L. Lucena,
J.B.L. Oliveira, L. Gama, Synthesis of zinc aluminate with high
surface area by microwave hydrothermal method applied in the
transesterification of soybean oil (biodiesel), Mater. Res. Bull.,
74 (2016) 124–128.
- X. Du, L. Li, W. Zhang, W. Chen, Y. Cui, Morphology and
structure features of ZnAl2O4 spinel nanoparticles prepared
by matrixisolation-assisted calcination, Mater. Res. Bull.,
61 (2015) 64–69.
- S.V. Motloung, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa,
Effects of Zn/citric acid mole fraction on the structure and
luminescence properties of the un-doped and 1.5% Pb2+ doped
ZnAl2O4 powders synthesized by citrate sol–gel method,
J. Lumin., 163 (2015) 8–16.
- K. Wang, L. Jiang, X. Wu, G. Zhang, Vacancy mediated Z-scheme
charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as
a bifunctional photocatalyst for solar-to-energy conversion,
J. Mater. Chem. A, 8 (2020) 13241–13247.
- Y. Wang, K. Wang, J. Wang, X.W.G. Zhang, Sb2WO6/BiOBr
2D nanocomposite S-scheme photocatalyst for NO removal,
J. Mater. Sci. Technol., 56 (2020) 236–243.
- Y. Hao, X. Dong, X.Wang, S. Zhai, H. Ma, X. Zhang, Controllable
electrostatic self-assembly of sub-3 nm graphene quantum
dots incorporated into mesoporous Bi2MoO6 frameworks:
efficient physical and chemical simultaneous co-catalysis for
photocatalytic oxidation, J. Mater. Chem. A., 4 (2016) 8298–8307.
- H. Zhang, L. Zhao, F. Geng, L.H. Guo, B. Wan, Y. Yang, Carbon
dots decoratedgraphitic carbon nitride as an efficient metal-free
photocatalyst for phenoldegradation, Appl. Catal. B., 180 (2016)
656–662.
- M. Aleksandrzak, W. Kukulka, E. Mijowska, Graphitic
carbon nitride/graphene oxide/reduced graphene oxide
nanocomposites for photoluminescence and photocatalysis,
Appl. Surf. Sci., 398 (2017) 56–62.
- D. Zhang, C. Wang, Y. Liu, Q. Shi, W. Wang, Y. Zhai, Green and
red photoluminescence from ZnAl2O4:Mn phosphors prepared
by sol–gel method, J. Lumin., 132 (2012) 1529–1531.
- W. Xie, R. Li, Q.Y. Xu, Enhanced photocatalytic activity of
Se-doped TiO2 under visible light irradiation, Sci. Rep., 8 (2018)
8752, doi: 10.1038/s41598-018-27135-4.
- T.T.T. Dang, S.T.T. Le, D. Channei, W. Khanitchaidecha,
Photodegradation mechanisms of phenol in the photocatalytic
process, Res. Chem. Intermed., 42 (2016) 5961–5974.