References

  1. A. Shokri, Employing electrocoagulation for the removal of Acid Red 182 in aqueous environment by using Box-Behenken design method, Desal. Water Treat., 115 (2018) 281–287.
  2. A. Shokri, Removal of Acid red 33 from aqueous solution by Fenton and photo Fenton processes,
    J. Chem. Health Risks, 7 (2017) 119–131.
  3. H.L. Jiang, P.H. Chen, S.L. Luo, X.B. Luo, X.M. Tu, Q. Cao, Y.L. Zhou, W.B. Zhang, Synthesis of novel biocompatible composite Fe3O4/ZrO2/chitosan and its application for dye removal, J. Inorg. Organomet., 23 (2013) 393–400.
  4. T.H. Wu, Q. Shao, S.S. Ge, L.W. Bao, Q.Y. Liu, The facile preparation of novel magnetic zirconia composites with the aid of carboxymethyl chitosan and their efficient removal of dye, RSC Adv., 6 (2016) 58020–58027.
  5. Z. Feng, L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin, Y. He, In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light, J. Environ. Sci., 87 (2020) 149–162.
  6. Q. Zhang, P. Chen, L. Chen, M. Wu, X. Dai, P. Xing, H. Lin, L. Zhao, Y. He, Facile fabrication of novel
    Ag2S/K-g-C3N4 composite and its enhanced performance in photocatalytic H2 evolution, J. Colloid Interface Sci., 568 (2020) 117–129.
  7. Z. Fang, Q. Li, L. Su, J. Chen, K. Chou, X. Hou, Efficient synergy of photocatalysis and adsorption of hexavalent chromium and Rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation, Appl. Catal., B, 241 (2019) 548–560.
  8. M. Mohadesi, A. Shokri, Treatment of oil refinery wastewater by photo-Fenton process using Box–Behnken design method: kinetic study and energy consumption, Int. J. Environ. Sci. Technol., 16 (2019) 7349–7356.
  9. A. Shokri, Application of sono–photo-Fenton process for degradation of phenol derivatives in petrochemical wastewater using full factorial design of experiment, Int. J. Ind. Chem., 9 (2018b) 295–303.
  10. A. Shokri, A kinetic study and application of electro Fenton process for the remediation of the aqueous environment containing toluene in a batch reactor, Russ. J. Appl. Chem., 90 (2017) 452−457.
  11. M. Mohadesi, A. Shokri, Evaluation of Fenton and photo-Fenton processes for the removal of p-chloronitrobenzene in aqueous environment using Box–Behnken design method,
    Desal. Water Treat., 81 (2017) 199–208.
  12. S. Xing, S. Song, J. Xiang, Low temperature combustion synthesis and photoluminescence mechanism of ZnO/ZnAl2O4 composite phosphors, Optik, 208 (2020) 164526, doi: 10.1016/j. ijleo.2020.164526.
  13. P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing, T.B. Rotamond, H. Lin, Y. Wu, Y. He, Microwave heating preparation of phosphorus doped g-C3N4 and its enhanced performance for photocatalytic H2 evolution in the help of Ag3PO4 nanoparticles, Int. J. Hydrogen Energy, 45 (2020) 14354–14367.
  14. F.Z. Akika, M. Benamira, H.L. Ahmar, M. Trari, I.A. Vramova, Ş. Suzer, Structural and optical properties of
    Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight, Surf. Interfaces, 18 (2020) 100406, doi: 10.1016/j. surfin.2019.100406.
  15. P. Moradipour, F. Dabirian, M. Moradipour, Ternary ZnO/ZnAl2O4/Al2O3 composite nanofiber as photocatalyst for conversion of CO2 and CH4, Ceram. Int., 46 (2020) 5566–5574.
  16. A. Shokri, K. Mahanpoor, D. Soodbar, Evaluation of a modified TiO2 (GO–B–TiO2) photocatalyst for degradation of 4-nitrophenol in petrochemical wastewater by response surface methodology based on the central composite design, J. Environ. Chem. Eng., 4 (2016) 585–598.
  17. Z.F. Yin, C.J. Cui, H. Chen, Duoni, X. Yu, W.Z. Qian, The application of carbon nanotube/graphene-based nanomaterials in wastewater treatment, Nano/Microscale Mater., 16 (2019) 1902301, doi: 10.1002/smll.201902301.
  18. M. Taghioskoui, Trends in graphene research, Mater. Today, 12 (2009) 34–37.
  19. A.R. Oganov, R.J. Hemley, R.M. Hazen, A.P. Jones, Structure, bonding, and mineralogy of carbon at extreme conditions, Rev. Mineral. Geochem., 75 (2013) 47–77.
  20. L. Mu, J. Wan, Z. Wang, Y. Gao, Y. Qian, Mn-doped zinc aluminate nanoparticles: hydrothermal synthesis, characterization, and photoluminescence properties, J. Nanosci. Nanotechnol., 6 (2006) 863–867.
  21. T. Charinpanitkul, P. Poommarin, A. Wongkaew, K.S. Kim, Dependence of zinc aluminate microscopic structure on its synthesis, J. Ind. Eng. Chem., 15 (2009) 163–166.
  22. S. Farhadi, S. Panahandehjoo, Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared
    by the co-precipitation method: a novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Appl. Catal., A, 382 (2010) 293–302.
  23. A. Adan-Mas, D. Wei, Photoelectrochemical properties of graphene and its derivatives, Nanomaterials,
    3 (2013) 325–356.
  24. A.D. Ballarini, S.A. Bocanegra, A.A. Castro, S.R. De Miguel, O.A. Scelza, Characterization of ZnAl2O4 obtained by different methods and used as catalytic support of Pt, Catal. Lett., 129 (2009) 293–302.
  25. Y. Wang, J. Liu, L. Liu, D.D. Sun, Enhancing stability and photocatalytic activity of ZnO nanoparticles by surface modification of graphene oxide, J. Nanosci. Nanotechnol., 12 (2012) 3896–3902.
  26. S.F. Wang, G.Z. Sun, L.M. Fang, L. Lei, X. Xiang, X.T. Zu, A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminium salts for use as fluorescence materials, Sci. Rep., 5 (2015) 12849, doi: 10.1038/srep12849.
  27. K.R. Reddy, K.V. Karthik, S.B. Benaka Prasad, S.K. Soni, H.M. Jeong, Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts, Polyhedron, 120 (2016) 169–174.
  28. M.R. Quirino, M.J.C. Oliveira, D. Keyson, G.L. Lucena, J.B.L. Oliveira, L. Gama, Synthesis of zinc aluminate with high surface area by microwave hydrothermal method applied in the transesterification of soybean oil (biodiesel), Mater. Res. Bull., 74 (2016) 124–128.
  29. X. Du, L. Li, W. Zhang, W. Chen, Y. Cui, Morphology and structure features of ZnAl2O4 spinel nanoparticles prepared by matrixisolation-assisted calcination, Mater. Res. Bull., 61 (2015) 64–69.
  30. S.V. Motloung, F.B. Dejene, H.C. Swart, O.M. Ntwaeaborwa, Effects of Zn/citric acid mole fraction on the structure and luminescence properties of the un-doped and 1.5% Pb2+ doped ZnAl2O4 powders synthesized by citrate sol–gel method, J. Lumin., 163 (2015) 8–16.
  31. K. Wang, L. Jiang, X. Wu, G. Zhang, Vacancy mediated Z-scheme charge transfer in a 2D/2D La2Ti2O7/g-C3N4 nanojunction as a bifunctional photocatalyst for solar-to-energy conversion, J. Mater. Chem. A, 8 (2020) 13241–13247.
  32. Y. Wang, K. Wang, J. Wang, X.W.G. Zhang, Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal, J. Mater. Sci. Technol., 56 (2020) 236–243.
  33. Y. Hao, X. Dong, X.Wang, S. Zhai, H. Ma, X. Zhang, Controllable electrostatic self-assembly of sub-3 nm graphene quantum dots incorporated into mesoporous Bi2MoO6 frameworks: efficient physical and chemical simultaneous co-catalysis for photocatalytic oxidation, J. Mater. Chem. A., 4 (2016) 8298–8307.
  34. H. Zhang, L. Zhao, F. Geng, L.H. Guo, B. Wan, Y. Yang, Carbon dots decoratedgraphitic carbon nitride as an efficient metal-free photocatalyst for phenoldegradation, Appl. Catal. B., 180 (2016) 656–662.
  35. M. Aleksandrzak, W. Kukulka, E. Mijowska, Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis, Appl. Surf. Sci., 398 (2017) 56–62.
  36. D. Zhang, C. Wang, Y. Liu, Q. Shi, W. Wang, Y. Zhai, Green and red photoluminescence from ZnAl2O4:Mn phosphors prepared by sol–gel method, J. Lumin., 132 (2012) 1529–1531.
  37. W. Xie, R. Li, Q.Y. Xu, Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation, Sci. Rep., 8 (2018) 8752, doi: 10.1038/s41598-018-27135-4.
  38. T.T.T. Dang, S.T.T. Le, D. Channei, W. Khanitchaidecha, Photodegradation mechanisms of phenol in the photocatalytic process, Res. Chem. Intermed., 42 (2016) 5961–5974.