References

  1. Y.F. Chen, W.X. Huang, D.L. He, Y.S. Tu, H. Huang, Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation, ACS Appl. Mater. Interfaces, 16 (2014) 14405–14414.
  2. J.Q. Jiao, Y.C. Wei, Z. Zhao, W.J. Zhong, J. Liu, J.M. Li, A.J. Duan, G.Y. Jiang, Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation, Ind. Eng. Chem. Res., 44 (2014) 17345–17354.
  3. W. Qiu, C.J. Re, M.C. Gong, Y.Z. Hou, Y.Q. Chen, Structure, surface properties and photocatalytic activity of TiO2 and TiO2/SiO2 catalysts prepared at different pH values, Acta Phys. Chim. Sin., 27 (2011) 1487–1492.
  4. X.H. Zhai, H.J. Long, J.Z. Dong, Y.A. Cao, Doping mechanism of N-TiO2/ZnO composite nanotube arrays and their photocatalytic activity, Acta Phys. Chim. Sin., 26 (2010) 663–668.
  5. A.C. Li, G.H. Li, Y. Zheng, L.L. Feng, Y.J. Zheng, Photocatalytic property and reaction mechanism
    of (Ni-Mo)/TiO2 nano thin film evaluated with Congo red, Acta Phys. Chim. Sin., 28 (2012) 457–464.
  6. N. Yan, Z. Zhao, Y. Li, Q.W. Chen, Synthesis of novel two-phase Co@SiO2 nanorattles with high catalytic activity, Inorg. Chem., 53 (2014) 9073–9079.
  7. G. He, G. Popov, L.F. Nazar, Hydrothermal synthesis and electrochemical properties of Li2CoSiO4/C nanospheres, Chem. Mater., 25 (2013) 1024–1031.
  8. L. Wang, P.X. Jin, S.H. Duan, H.D. She, J.W. Huang, Q.Z. Wang, In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction, Sci. Bull., 64 (2019) 926–933.
  9. X. Ma, K.Y. Chen, B. Niu, Y. Li, L. Wang, J.W. Huang, H.D. She, Q.Z. Wang, Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight, Chin. J. Catal., 41 (2020) 1535–1543.
  10. S.G. Rudisill, Z.Y. Wang, A. Stein, Maintaining the structure of templated porous materials for reactive and high-temperature applications, Langmuir, 28 (2012) 1024–1031.
  11. L. Li, X.D. Huang, T.Y. Hu, J.X. Wang, W.Z. Zhang, J.Q. Zhang, Synthesis of three-dimensionally ordered macroporous composite Ag/Bi2O3–TiO2 by dual templates and its photocatalytic activities for degradation of organic pollutants under multiple modes, New J. Chem., 38 (2014) 5293–5302.
  12. B.T. Holland, C.F. Blanford, T. Do, A. Stein, Synthesis of highly ordered three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites, Chem. Mater., 11 (1999) 795–805.
  13. C. Dionigi, P. Nozar, D.D. Domenico, G. Caestani, A simple geometrical model for emulsifier free polymer colloid formation, J. Colloid Interface Sci., 275 (2004) 445–449.
  14. L. Lu, L. Li, T.Y. Hu, W.Z. Zhang, X.D. Huang, J.Q. Zhang, X.J. Liu, Preparation, characterization, and photocatalytic activity of three-dimensionally ordered macroporous hybrid monosubstituted polyoxometalate K5[Co(H2O)PW11O39] amine functionalized titanium catalysts, J. Mol. Catal. A: Chem., 11 (2014) 283–294.
  15. K. Cheng, W.B. Sun, H.Y. Jiang, J.J. Liu, J. Lin, Sonochemical deposition of Au nanoparticles on different
    facets-dominated anatase TiO2 single crystals and resulting photocatalytic performance, J. Phys. Chem. C, 117 (2013) 14600–14607.
  16. Y.F. Gao, Y. Masuda, H. Ohta, K. Koumoto, Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex solution, Chem. Mater., 16 (2004) 2615–2622.
  17. T.G. Deepak, D. Subash, G.S. Anjusree, K.R. Narendra Pai, S.V. Nair, A.S. Nair, Photovoltaic property of anatase TiO2 3D mesoflowers, ACS Sustainable Chem. Eng., 2 (2014) 2722–2780.
  18. C.D. Gu, C. Cheng, H.Y. Huang, T.L. Wong, N. Wang, T.Y. Zhang, Growth and photocatalytic activity
    of dendrite-like ZnO@Ag heterostructure nanocrystals, Cryst. Growth Des., 9 (2009) 3278–3285.
  19. J. Liu, Y.J. Hu, F. Gu, C.Z. Li, Flame synthesis of ball-in-shell structured TiO2 nanospheres, Ind. Eng. Chem. Res., 48 (2009) 735–739.
  20. L.Q. Jing, B.F. Xin, L.F Yuan, L.P. Xue, B.Q. Wang, H.G. Fu, Effects of surface oxygen vacancies on photophysical photochemical processes of Zn-doped TiO2 nanoparticles and their relationships, J. Phys. Chem. B, 110 (2006) 17860–17865.
  21. M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2: size quantization effect and reaction intermediates, J. Phys. Chem., 91 (1987) 4305–4310.
  22. L. Li, X.D. Huang, J.Q. Zhang, W.Z. Zhang, F.M. Ma, Z.X. Xiao, S. Gai, D.D. Wang, N. Li, Multi-layer three-dimensionally ordered bismuth trioxide/titanium dioxide nanocomposite: synthesis and enhanced photocatalytic activity, J. Colloid Interface Sci., 4 (2015) 13–22.
  23. Y. Yang, G.Z. Wang, Q. Deng, DHL. Ng, H.J. Zhao, Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange., ACS Appl. Mater. Interfaces, 6 (2014) 3008–3015.
  24. Y. Komuro, Y. Matsumoto, Electron beam irradiation-induced reduction of SnO2 deposited on TiO2(110) surfaces, J. Phys. Chem. C, 115 (2011) 6618–6621.