References

  1. P. Sun, A. Elgowainy, M. Wang, J. Han, R.J. Henderson, Estimation of US refinery water consumption and allocation to refinery products, Fuel, 221 (2018) 542–557.
  2. R. Singh, D.V. Naik, R.K. Dutta, P.K. Kanaujia, Biochars for the removal of naphthenic acids from water: a prospective approach towards remediation of petroleum refinery wastewater, J. Clean. Prod., J. Cleaner Prod., 266 (2020) 121986, doi: 10.1016/j.jclepro.2020.121986.
  3. J.H. Gary, G.E. Handwerk, M.J. Kaiser, Petroleum Refining: Technology and Economics, CRC Press, USA, 2007.
  4. F. Qaderi, A.H. Sayahzadeh, M. Azizi, Efficiency optimization of petroleum wastewater treatment by using of serial moving bed biofilm reactors, J. Cleaner Prod., 192 (2018) 665–677.
  5. B. Singh, P. Kumar, Pre-treatment of petroleum refinery wastewater by coagulation and flocculation using mixed coagulant: optimization of process parameters using response surface methodology (RSM), J. Water Process Eng., 36 (2020) 101317, doi: 10.1016/j.jwpe.2020.101317.
  6. M.H. El-Naas, R. Surkatti, S. Al-Zuhair, Petroleum refinery wastewater treatment: a pilot scale study, J. Water Process Eng., 14 (2016) 71–76.
  7. Y. Jiang, A. Khan, H. Huang, Y. Tian, X. Yu, Q. Xu, L. Mou, J. Lv, P. Zhang, P. Liu, L. Deng, Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor, Sci. Total Environ., 646 (2019) 606–617.
  8. B.H. Diya’uddeen, W.M. Daud, A.A Aziz, Treatment technologies for petroleum refinery effluents: a review, Process Saf. Environ. Prot., 89 (2011) 95–105.
  9. C. Chen, X. Yan, Y. Xu, B.A. Yoza, X. Wang, Y. Kou, H. Ye, Q. Wang, Q.X. Li, Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater, Sci. Total Environ., 651 (2019) 2631–2640.
  10. A.M. Huízar-Félix, C. Aguilar-Flores, A. Martínez-de-la Cruz, J.M. Barandiarán, S. Sepúlveda-Guzmán, R. Cruz-Silva, Removal of tetracycline pollutants by adsorption and magnetic separation using reduced graphene oxide decorated with α-Fe2O3 nanoparticles, J. Nanomater., 9 (2019) 313, doi: 10.3390/ nano9030313.
  11. M. Elazzouzi, K. Haboubi, M.S. Elyoubi, Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater, Chem. Eng. Res. Des., 117 (2017) 614–626.
  12. M.L. Davis, S.J. Masten, Principles of Environmental Engineering, McGraw-Hill Education, USA, 2013.
  13. N. Van Quy, N.D. Hoa, M. An, Y. Cho, D. Kim, A highperformance triode-type carbon nanotube field emitter for mass production, Nanotechnology, 18 (2007) 345201.
  14. K. Lü, G. Zhao, X. Wang, A brief review of graphene-based material synthesis and its application in environmental pollution management, Sci. Bull., 57 (2012) 1223–1234.
  15. N. Pandey, S.K. Shukla, N.B. Singh, Water purification by polymer nanocomposites: an overview, J. Nanostruct. Polym. Nanocomposites, 3 (2017) 47–66.
  16. Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li, W. Wang, J. Gao, Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oilabsorbent, ACS Appl. Mater. Interfaces, 5 (2013) 10018–10026.
  17. L. Das, P. Das, A. Bhowal, C. Bhattachariee, Synthesis of hybrid hydrogel nano-polymer composite using graphene oxide, chitosan and PVA and its application in wastewater treatment, Environ. Technol. Innovation, 18 (2020) 100664, doi: 10.1016/j. eti.2020.100664.
  18. D. Baragaño, R. Forján, L. Welte, J.L.R. Gallego, Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles, Sci. Rep., 10 (2020) 1–10.
  19. W. Yu, L. Sisi, Y. Haiyan, L. Jie, Progress in the functional modification of graphene/graphene oxide: a review, RSC Adv., 10 (2020) 15328–15345.
  20. E. Çalışkan Salihi, J. Wang, G. Kabacaoğlu, S. Kırkulak, L. Šiller, Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters, Sep. Sci. Technol., 56 (2021) 453–461.
  21. C.P.M. de Oliveira, M.M. Viana, M.C.S. Amaral, Coupling photocatalytic degradation using a green TiO2 catalyst to membrane bioreactor for petroleum refinery wastewater reclamation, J. Water Process Eng., 34 (2020) 101093, doi: 10.1016/j.jwpe.2019.101093.
  22. C.Z. Zhang, B. Chen, Y. Bai, J. Xie, A new functionalized reduced graphene oxide adsorbent for removing heavy metal ions in water via coordination and ion exchange, Sep. Sci. Technol., 53 (2018) 2896–2905.
  23. S.M. Shaheen, N.K. Niazi, N.E. Hassan, I. Bibi, H. Wang, D.C. Tsang, Y.S. Ok, N. Bolan, J. Rinklebe, Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review, Int. Mater. Rev., 64 (2019) 216–247.
  24. R.A. Al-Alawi, J.H. Al-Mashiqri, J.S. Al-Nadabi, B.I. Al-Shihi, Y. Baqi, Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options, Front. Plant Sci., 8 (2017) 845, doi: 10.3389/fpls.2017.00845.
  25. Y. Hou, S. Lv, L. Liu, X. Liu, High-quality preparation of graphene oxide via the Hummers’ method: understanding the roles of the intercalator, oxidant, and graphite particle size. Ceram. Int., 46 (2020) 2392–2402.
  26. R.B. Baird, Standard Methods for the Examination of Water and Wastewater, 23rd ed., Water Environment Federation, American Public Health Association, American Water Works Association, USA, 2017.
  27. K. Gupta, O.P. Khatri, Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways, J. Colloid Interface Sci., 501 (2017) 11–21.
  28. R. Natarajan, R. Manivasagan, Treatment of tannery effluent by passive uptake-parametric studies and kinetic modeling, Environ. Sci. Pollut., 25 (2018) 5071–5075.
  29. N. Rajamohan, A. Al-Sadi, K.P. Ramachandran, Treatment of refinery waste water using modified sludge – effect of process parameters, sorbent characterization and kinetic studies, Desal. Water Treat., 57 (2016) 19741–19749.
  30. V.R. Moreira, Y.A. Lebron, L.V. de Souza Santos, Predicting the biosorption capacity of copper by dried Chlorella pyrenoidosa through response surface methodology and artificial neural network models, Chem. Eng. J. Adv. 4 (2020) 100041, doi: 10.1016/j.ceja.2020.100041.
  31. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  32. A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Resour. Ind., 15 (2016) 14–27.
  33. F.C. Wu, R.L Tseng, R.S. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dyechitosan systems, Chem. Eng. J., 150 (2009) 366–373.
  34. S. Karagoz, T. Tay, S. Ucar, M. Erdem, Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresour. Technol., 99 (2008) 6214–6222.
  35. G. Crini, P.M. Badot, Sorption Processes and Pollution. Conventional and Non-Conventional Sorbents for Pollutant Removal from Wastewaters, Presses universitaires de Franche- Comté, France, 2010.