References
- P. Sun, A. Elgowainy, M. Wang, J. Han, R.J. Henderson,
Estimation of US refinery water consumption and allocation to
refinery products, Fuel, 221 (2018) 542–557.
- R. Singh, D.V. Naik, R.K. Dutta, P.K. Kanaujia, Biochars for
the removal of naphthenic acids from water: a prospective
approach towards remediation of petroleum refinery
wastewater, J. Clean. Prod., J. Cleaner Prod., 266 (2020) 121986,
doi: 10.1016/j.jclepro.2020.121986.
- J.H. Gary, G.E. Handwerk, M.J. Kaiser, Petroleum Refining:
Technology and Economics, CRC Press, USA, 2007.
- F. Qaderi, A.H. Sayahzadeh, M. Azizi, Efficiency optimization
of petroleum wastewater treatment by using of serial moving
bed biofilm reactors, J. Cleaner Prod., 192 (2018) 665–677.
- B. Singh, P. Kumar, Pre-treatment of petroleum refinery
wastewater by coagulation and flocculation using mixed
coagulant: optimization of process parameters using response
surface methodology (RSM), J. Water Process Eng., 36 (2020)
101317, doi: 10.1016/j.jwpe.2020.101317.
- M.H. El-Naas, R. Surkatti, S. Al-Zuhair, Petroleum refinery
wastewater treatment: a pilot scale study, J. Water Process Eng.,
14 (2016) 71–76.
- Y. Jiang, A. Khan, H. Huang, Y. Tian, X. Yu, Q. Xu, L. Mou,
J. Lv, P. Zhang, P. Liu, L. Deng, Using nano-attapulgite clay
compounded hydrophilic urethane foams (AT/HUFs) as biofilm
support enhances oil-refinery wastewater treatment in a biofilm
membrane bioreactor, Sci. Total Environ., 646 (2019) 606–617.
- B.H. Diya’uddeen, W.M. Daud, A.A Aziz, Treatment
technologies for petroleum refinery effluents: a review, Process
Saf. Environ. Prot., 89 (2011) 95–105.
- C. Chen, X. Yan, Y. Xu, B.A. Yoza, X. Wang, Y. Kou, H. Ye,
Q. Wang, Q.X. Li, Activated petroleum waste sludge biochar
for efficient catalytic ozonation of refinery wastewater, Sci.
Total Environ., 651 (2019) 2631–2640.
- A.M. Huízar-Félix, C. Aguilar-Flores, A. Martínez-de-la
Cruz, J.M. Barandiarán, S. Sepúlveda-Guzmán, R. Cruz-Silva,
Removal of tetracycline pollutants by adsorption and magnetic
separation using reduced graphene oxide decorated with
α-Fe2O3 nanoparticles, J. Nanomater., 9 (2019) 313, doi: 10.3390/
nano9030313.
- M. Elazzouzi, K. Haboubi, M.S. Elyoubi, Electrocoagulation
flocculation as a low-cost process for pollutants removal from
urban wastewater, Chem. Eng. Res. Des., 117 (2017) 614–626.
- M.L. Davis, S.J. Masten, Principles of Environmental
Engineering, McGraw-Hill Education, USA, 2013.
- N. Van Quy, N.D. Hoa, M. An, Y. Cho, D. Kim, A highperformance
triode-type carbon nanotube field emitter for
mass production, Nanotechnology, 18 (2007) 345201.
- K. Lü, G. Zhao, X. Wang, A brief review of graphene-based
material synthesis and its application in environmental
pollution management, Sci. Bull., 57 (2012) 1223–1234.
- N. Pandey, S.K. Shukla, N.B. Singh, Water purification by
polymer nanocomposites: an overview, J. Nanostruct. Polym.
Nanocomposites, 3 (2017) 47–66.
- Y. Liu, J. Ma, T. Wu, X. Wang, G. Huang, Y. Liu, H. Qiu, Y. Li,
W. Wang, J. Gao, Cost-effective reduced graphene oxide-coated
polyurethane sponge as a highly efficient and reusable oilabsorbent,
ACS Appl. Mater. Interfaces, 5 (2013) 10018–10026.
- L. Das, P. Das, A. Bhowal, C. Bhattachariee, Synthesis of hybrid
hydrogel nano-polymer composite using graphene oxide,
chitosan and PVA and its application in wastewater treatment,
Environ. Technol. Innovation, 18 (2020) 100664, doi: 10.1016/j.
eti.2020.100664.
- D. Baragaño, R. Forján, L. Welte, J.L.R. Gallego, Nanoremediation
of As and metals polluted soils by means of graphene oxide
nanoparticles, Sci. Rep., 10 (2020) 1–10.
- W. Yu, L. Sisi, Y. Haiyan, L. Jie, Progress in the functional
modification of graphene/graphene oxide: a review, RSC Adv.,
10 (2020) 15328–15345.
- E. Çalışkan Salihi, J. Wang, G. Kabacaoğlu, S. Kırkulak, L. Šiller,
Graphene oxide as a new generation adsorbent for the removal
of antibiotics from waters, Sep. Sci. Technol., 56 (2021) 453–461.
- C.P.M. de Oliveira, M.M. Viana, M.C.S. Amaral, Coupling
photocatalytic degradation using a green TiO2 catalyst to
membrane bioreactor for petroleum refinery wastewater
reclamation, J. Water Process Eng., 34 (2020) 101093,
doi: 10.1016/j.jwpe.2019.101093.
- C.Z. Zhang, B. Chen, Y. Bai, J. Xie, A new functionalized reduced
graphene oxide adsorbent for removing heavy metal ions in
water via coordination and ion exchange, Sep. Sci. Technol.,
53 (2018) 2896–2905.
- S.M. Shaheen, N.K. Niazi, N.E. Hassan, I. Bibi, H. Wang,
D.C. Tsang, Y.S. Ok, N. Bolan, J. Rinklebe, Wood-based biochar
for the removal of potentially toxic elements in water and
wastewater: a critical review, Int. Mater. Rev., 64 (2019) 216–247.
- R.A. Al-Alawi, J.H. Al-Mashiqri, J.S. Al-Nadabi, B.I. Al-Shihi,
Y. Baqi, Date palm tree (Phoenix dactylifera L.): natural products
and therapeutic options, Front. Plant Sci., 8 (2017) 845,
doi: 10.3389/fpls.2017.00845.
- Y. Hou, S. Lv, L. Liu, X. Liu, High-quality preparation of
graphene oxide via the Hummers’ method: understanding the
roles of the intercalator, oxidant, and graphite particle size.
Ceram. Int., 46 (2020) 2392–2402.
- R.B. Baird, Standard Methods for the Examination of Water
and Wastewater, 23rd ed., Water Environment Federation,
American Public Health Association, American Water Works
Association, USA, 2017.
- K. Gupta, O.P. Khatri, Reduced graphene oxide as an effective
adsorbent for removal of malachite green dye: plausible
adsorption pathways, J. Colloid Interface Sci., 501 (2017) 11–21.
- R. Natarajan, R. Manivasagan, Treatment of tannery effluent
by passive uptake-parametric studies and kinetic modeling,
Environ. Sci. Pollut., 25 (2018) 5071–5075.
- N. Rajamohan, A. Al-Sadi, K.P. Ramachandran, Treatment of
refinery waste water using modified sludge – effect of process
parameters, sorbent characterization and kinetic studies,
Desal. Water Treat., 57 (2016) 19741–19749.
- V.R. Moreira, Y.A. Lebron, L.V. de Souza Santos, Predicting the
biosorption capacity of copper by dried Chlorella pyrenoidosa
through response surface methodology and artificial
neural network models, Chem. Eng. J. Adv. 4 (2020) 100041,
doi: 10.1016/j.ceja.2020.100041.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms
and thermodynamic modeling of liquid phase adsorption
of Rhodamine B dye onto Raphia hookerie fruit epicarp,
Water Resour. Ind., 15 (2016) 14–27.
- F.C. Wu, R.L Tseng, R.S. Juang, Characteristics of Elovich
equation used for the analysis of adsorption kinetics in dyechitosan
systems, Chem. Eng. J., 150 (2009) 366–373.
- S. Karagoz, T. Tay, S. Ucar, M. Erdem, Activated carbons from
waste biomass by sulfuric acid activation and their use on
methylene blue adsorption, Bioresour. Technol., 99 (2008)
6214–6222.
- G. Crini, P.M. Badot, Sorption Processes and Pollution.
Conventional and Non-Conventional Sorbents for Pollutant
Removal from Wastewaters, Presses universitaires de Franche-
Comté, France, 2010.