References

  1. P.G. Whitehead, T. Lack, Dispersion and Self-Purification of Pollutants in Surface Water Systems, A Report by IHP Working Group 6.1., A Contribution to the International Hydrological Programme, Technical Papers in Hydrology, United Nations Educational, Scientific and Cultural Organization, Paris, 1982.
  2. K.-D. Balke, Y. Zhu, Natural water purification and water management by artificial groundwater recharge, J. Zhejiang Univ. Sci. B, 9 (2008) 221–226.
  3. E. Wysowska, K. Kudlik, A. Kicińska, Bacteriological health threats to water in home wells, Arch. Environ. Prot., 46 (2020) 21–34.
  4. E. Wysowska, A. Kicińska, G. Nikiel, Analysis of natural vulnerability of groundwater intakes to migration of surface pollutants based on a selected part of the Dunajec river basin, Pol. J. Environ. Stud., 29 (2020) 2925–2934.
  5. W. Wang, Y. Yi, J. Zhong, A. Kumar, S.-L. Li, Carbon biogeochemical processes in a subtropical karst river – reservoir system, J. Hydrol., 591 (2020) 125590, doi: 10.1016/j. jhydrol.2020.125590.
  6. A. Siemieniuk, J. Szczykowska, The monitoring of water pollution level in low-retention reservoirs in Sokolka, Ochrona Środowiska i Zasobów Naturalnych, 48 (2011) 297–306.
  7. T.-Y. Ling, N. Gerunsin, C.-L. Soo, L. Nyanti, S.-F. Sim, J. Grinang, Seasonal changes and spatial variation in water quality of a large young tropical reservoir and its downstream river, J. Chem-NY, 2017 (2017) 8153246,
    doi: 10.1155/2017/8153246.
  8. A. Jaguś, M. Rzętała, Hydrochemical consequences of feeding flow-through reservoirs with contaminated water, Rocz. Ochr. Sr., 14 (2012) 632–649.
  9. Ł. Wiejaczka, P. Prokop, R. Kozłowski, S. Sarkar, Reservoir’s impact on the water chemistry of the Teesta river mountain course (Darjeeling Himalaya), Ecol. Chem. Eng. S, 25 (2018) 73–88.
  10. S. Lincheva, Y. Todorova, Y. Topalova, Long-term assessment of the self-purification potential of a technologically managed ecosystem: the Middle Iskar cascade, Biotechnol. Biotechnol. Equip., 28 (2014) 455–462.
  11. L. Paul, Nutrient elimination in pre-dams: results of long term studies, Hydrobiologia, 504 (2003) 289–295.
  12. K. Morling, P. Herzsprung, N. Kamjunke, Discharge determines production of, decomposition of and quality changes in dissolved organic carbon in pre-dams of drinking water reservoirs, Sci. Total Environ., 577 (2017) 329–339.
  13. A. Jaguś, Assessment of the effectiveness of Tresna Reservoir protection based on the Soła River waters contamination, Inżynieria Ekologiczna, 18 (2017) 55–60.
  14. S. Bałus, D. Boros-Meinike, W. Drzyżdżyk, K. Fiedler, A. Olszewski, L. Osuch-Chacińska, R. Ryżak,
    K. Stanach-Bałus, Soła River Cascade – A Monograph: Series Monographs of Hydrotechnical Structures in Poland, IMGW, RZGW w Krakowie, Warszawa, 2007.
  15. A. Łajczak, Sediment retention in the dam reservoirs of the Carpathian Vistula basin, Czasopismo Geograficzne, 1 (1986) 47–75.
  16. K. Stachowicz, M. Czernoch, Ecological Characteristics of Dam Reservoirs on the Soła River, Instytut Gospodarki Przestrzennej i Komunalnej, Warszawa, 1992.
  17. A. Kicińska, E. Wysowska, Health risk related to the presence of metals in drinking water from different types of sources, Water Environ. J., 35 (2021) 27–40.
  18. U. Dmitruk, J. Kloze, E. Sieinski, In: W. Majewski, T. Walczykiewicz, Eds., Sustainable Management of Water Resources and Hydrotechnical Infrastructure in the Light of Forecasted Climate Changes, IMGW PIB, Warszawa, 2007, pp. 161–229.
  19. Z. Nowicki, A. Sadurski, In: B. Paczyński, A. Sadurski, Eds., Regional Hydrogeology of Poland Volume 1, Państwowy Instytut Geologiczny, Warszawa, 2007, pp. 95–105.
  20. V.V. Puklakov, K.K. Edel’shtein, E.R. Kremenetskaya, N.A. Gashkina, Water self-purification in the Mozhaisk Reservoir in winter, Water Resour., 29 (2002) 655–664.
  21. E. Jachniak, I. Suchanek, The eutrophication of the Tresna dam reservoir in terms of its recreational use, Inżynieria Ekologiczna, 44 (2015) 170–177.
  22. R.A. Vollenweider, Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters with Particular References to Nitrogen and Phosphorus as Factors in Eutrophication, OECD Technical Report DAS/CSI/68.27, Paris, 1968.
  23. A. Kumar, M.P. Sharma, A. Kumar, Green house gas emissions from hydropower reservoirs: policy and challenges, Int. J. Renewable Energy Res.-IJRER, 6 (2016) 472–476.
  24. A. Kumar, M.P. Sharma, A modeling approach to assess the greenhouse gas risk in Koteshwar hydropower reservoir, India, Human Ecol. Risk Assess., 22, 8 (2016), 1651–1664.
  25. A. Kumar, M.P. Sharma, Estimation of green house gas emissions from Koteshwar hydropower reservoir, India, Environ. Monit. Assess.: An Int. J., 189 (2017) 240–251.
  26. W. Leszczyński, J. Mroziński, E. Sieinski, Research on Changes in the Capacity of the Tresna Reservoir, Ośrodek Technicznej Kontroli Zapór IMGW, Warszawa, 2010.
  27. P. Zawadzki, R. Błażejewski, M. Pawlak, Review of reservoirs’ desilting methods, Acta Sci. Pol.-Formatio Circumiectus, 16 (2017) 217–228.
  28. J. Moore, S. Ramamoorthy, Heavy Metals in Natural Waters, Springer-Verlag, Berlin, 1984.
  29. A. Kleeberg, R. Hämmerling, B. Nixdorf, Effect of hypolimnetic discharge on the faster deprivation of phosphorus from lake sediment (Lake Jabel, North-East Germany), Lakes Reservoirs Res. Manage.,
    6 (2001) 289–295.
  30. S.R. Carpenter, J.F. Kitchell, J.R. Hodgson, Cascading trophic interactions and lake productivity, BioScience,
    35 (1985) 634–639.
  31. M. Søndergaard, T.L. Lauridsen, L.S. Johansson, E. Jeppesen, Repeated fish removal to restore lakes: case study of Lake Væng, Denmark—two biomanipulations during 30 years of monitoring, Water, 9 (2017) 1–18.
  32. L. Triest, I. Stiers, S.V. Onsem, Biomanipulation as a naturebased solution to reduce cyanobacterial blooms, Aquat. Ecol., 50 (2016) 461–484.
  33. J.-Y. Ha, M. Saneyoshi, H.-D. Park, H. Toda, S. Kitano, T. Homma, T. Shiina, Y. Moriyama, K.-H. Chang, T. Hanazato, Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan, Limnology, 14 (2013) 19–30.
  34. L. Szlauer, B. Szlauer, A. Szlauer-Łukaszewska, Unconventional Methods of Water Purification, Akademia Rolnicza w Szczecinie, Szczecin, 2001.
  35. P. Keshavanath, F.A. Leao da Fonseca, E.G. Affonso, A.D. Nobre, N.P. Jeffson, Periphyton growth on three biosubstrates and its influence on the performance of Jaraqui (Semaprochilodus insignis), Int. J. Aquacult.,
    7 (2017) 86–93.
  36. S. Kumar, P.K. Pandey, S. Kumar, T. Anand, B. Suryakumar, R. Bhuvaneswari, Effect of periphyton (aquamat installation) in the profitability of semi-intensive shrimp culture systems, Indian J. Econ. Dev., 7 (2019) 1–9.
  37. Y. Wu, L. Huang, Y. Wang, L. Li, G. Li, B. Xiao, L. Song, Reducing the phytoplankton biomass to promote the growth of submerged macrophytes by introducing artificial aquatic plants in shallow eutrophic waters, Water, 11 (2019) 1–15.
  38. M. Tarkowska-Kukuryk, W. Peczula, T. Mieczan, Grazing affects periphytic algal biomass in the periphyton-macrophyte relationship independently of the substrate type and nutrient status, J. Limnol., 79 (2020) 124–137.
  39. M. Sitarek, A. Napiórkowska-Krzebietke, R. Mazur, B. Czarnecki, J.P. Pyka, K. Stawecki, M. Olech, S. Sołtysiak, A. Kapusta, Application of effective microorganisms technology as a lake restoration tool – a case study of Muchawka reservoir, J. Elementol., 22 (2017) 529–543.
  40. R.S. Mouhamad, L.A. Mutlag, M.T. Al-Khateeb, M. Iqbal, A. Nazir, K.M. Ibrahim, R.A. Mussa, O.H. Jassam, Reducing water salinity using effective microorganisms, Net J. Agric. Sci., 5 (2017) 114–120.
  41. M.W.S. Hoo, S.S. Teo, Investigation on the efficiency of effective microorganisms for polluted water treatment, Appl. Microbiol.: Theory Technol., 2 (2021) 1–17.
  42. R. Mazur, The application of microbiological biopreparations in the process of water remediation of the dam reservoir in Głuchów, Acta Sci. Pol.-Formatio Circumiectus, 19 (2020) 81–95.
  43. J. Mazurkiewicz, A. Mazur, R. Mazur, K. Chmielowski, W. Czekała, D. Janczak, The process of microbiological remediation of the polluted Słoneczko reservoir in Poland: for reduction of water pollution and nutrients management, Water, 12 (2020) 1–19.
  44. Z. Sharip, S.B.A. Razak, N. Noordin, F.M. Yusoff, Application of an effective microorganism product as a cyanobacterial control and water quality improvement measure in Putrajaya Lake, Malaysia, Earth Syst. Environ., 4 (2019) 213–223.
  45. R. Gołdyn, B. Messyasz, The State of Water Quality and the Possibility of Reclamation of Lake Durowskie, Wydział Biologii Uniwersytetu im. Adama Mickiewicza w Poznaniu, Poznań, 2008.
  46. K. Szopa, K. Banasik, T. Krzykawski, Mechanism of rhabdophane-(La) and lanthanite-(La) formation during reduction of bioavailable nutrients in water based on SEM and XRD study, Contemp. Trends Geosci., 1 (2012) 99–102.
  47. A. Eymontt, K. Wierzbicki, Revitalization of eutroficated water ecosystems by the dredging method – problems and solutions, Woda-Środowisko-Obszary Wiejskie, 19 (2019) 21–37.
  48. D.A. Tomasko, M. Britt, M.J. Carnevale, The ability of barley straw, cypress leaves and L-lysine to inhibit cyanobacteria in Lake Hancock, a hypereutrophic lake in Florida, Florida Scientis, 79 (2016) 147–158.
  49. V. Fervier, P. Urrutia-Cordero, E. Piano, F. Bona, K.M. Persson, L.-A. Hansson, Evaluating nutrient reduction, grazing and barley straw as measures against algal growth, Wetlands, 40 (2020) 193–202.
  50. W. Ripl, Biochemical oxidation of polluted lake sediment with nitrate – a new restoration method, Ambio, 5 (1976) 132–135.
  51. R. Wiśniewski, J. Ślusarczyk, T. Kaliszewski, A. Szulczewski, P. Nowacki, “Proteus”, a new device for application of coagulants directly to sediment during its controlled resuspension, Verh. Internat. Verein Limnol., 30 (2010) 1421–1424.
  52. Ł. Bryl, T. Sobczyński, R. Wiśniewski, Methods of Protection and Reclamation of Lakes, J.K. Garbacz, Ed., Diagnosing the State of Environment – Research Methods and Forecasts, Bydgoskie Towarzystwo Naukowe, Bydgoszcz, 2017, pp. 15–32.
  53. J. Chmist, M. Hämmerling, Selecting the most effective method of recultivation of water reservoirs using the AHP method, Acta Sci. Pol.-Formatio Circumiectus, 15 (2016) 27–39.
  54. A.J. Horne, R. Jung, H. Lai, B. Faisst, M. Beutel, Hypolimnetic oxygenation 2: oxygen dynamics in a large reservoir with submerged down-flow contact oxygenation (Speece cone), Lake Reservoir Manage., 35 (2019) 323–337.
  55. D. Austin, R. Scharf, C-F. Chen, J. Bode, Hypolimnetic oxygenation and aeration in two Midwestern USA reservoirs, Lake Reservoir Manage., 35 (2019) 266–276.
  56. H. Zhang, M. Yan, T. Huang, X. Huang, S. Yang, N. Li, N. Wang, Water-lifting aerator reduces algal growth in stratified drinking water reservoir: novel insights into algal metabolic profiling and engineering applications, Environ. Pollut., 266 (2020) 115384, doi: 10.1016/j.envpol.2020.115384.