References

  1. H.-R. Buser, T. Poiger, M.D. Müller, Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater, Environ. Sci. Technol., 33 (1999) 2529–2535.
  2. I. Georgaki, E. Vasilaki, N. Katsarakis, A study on the degradation of carbamazepine and ibuprofen by TiO2 and ZnO photocatalysis upon UV/visible-light irradiation, Am. J. Anal. Chem., 5 (2014) 518–534.
  3. A.B.A. Boxall, V.D.J. Keller, J.O. Straub, S.C. Monteiro, R. Fussell, R.J. Williams, Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals, Environ. Int., 73 (2014) 176–185.
  4. J.L. Santos, I. Aparicio, E. Alonso, Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain), Environ. Int., 33 (2007) 596–601.
  5. S. Han, K. Choi, J. Kim, K. Ji, S. Kim, B. Ahn, J. Yun, K. Choi, J.S. Khim, X. Zhang, J. Giesy, Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa, Aquat. Toxicol., 98 (2010) 256–264.
  6. I. Nitoi, T. Oncescu, P. Oancea, Mechanism and kinetic study for the degradation of lindane by photo-Fenton process, J. Ind. Eng. Chem., 19 (2013) 305–309.
  7. C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, D. Mantzavinos, Advanced oxidation processes for water treatment: advances and trends for R&D, J. Chem. Technol. Biotechnol., 83 (2008) 769–776.
  8. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  9. J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
  10. D.A. Nichela, A.M. Berkovic, M.R. Costante, M.P. Juliarena, F.S. García Einschlag, Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)-based systems, Chem. Eng. J., 228 (2013) 1148–1157.
  11. H. Gong, W. Chu, S.H. Lam, A.Y.-C. Lin, Ibuprofen degradation and toxicity evolution during Fe2+/oxone/UV process, Chemosphere, 167 (2017) 415–421.
  12. A. Uheida, A. Mohamed, M. Belaqziz, W.S. Nasser, Photocatalytic degradation of ibuprofen, naproxen, and cetirizine using PANMWCNT nanofibers crosslinked TiO2-NH2 nanoparticles under visible light irradiation, Sep. Purif. Technol., 212 (2019) 110–118.
  13. Y. Gu, J. Yperman, R. Carleer, J. D’Haen, J. Maggen, S. Vanderheyden, K. Vanreppelen, R.M. Garcia, Adsorption and photocatalytic removal of ibuprofen by activated carbon impregnated with TiO2 by UV–Vis monitoring, Chemosphere, 217 (2019) 724–731.
  14. H. Chen, Y-P. Peng, T-Y. Chen, K-F. Chen, K-L Chang, Z. Dang, G-N. Lu, H. He, Enhanced photoelectrochemical degradation of ibuprofen and generation of hydrogen via BiOI-deposited TiO2 nanotube arrays, Sci. Total Environ., 633 (2018) 1198–1205.
  15. S. Loaiza-Ambuludi, M. Panizza, N. Oturan, M.A. Oturan, Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis, Catal. Today, 224 (2014) 29–33.
  16. F. Méndez-Arriaga, S. Esplugas, J. Giménez, Degradation of the emerging contaminant ibuprofen in water by photo-Fenton, Water Res., 44 (2010) 589–595.
  17. M. Kwon, Y. Yoon, S. Kim, Y. Jung, T.-M. Hwang, J.-W. Kang, Removal of sulfamethoxazole, ibuprofen and nitrobenzene by UV and UV/chlorine processes: a comparative evaluation of 275 nm LED-UV and 254 nm LP-UV, Sci. Total Environ., 637‑638 (2018) 1351–1357.
  18. W. Li, V. Nanaboina, Q. Zhou, G.V. Korshin, Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products, Water Res., 46 (2012) 403–412.
  19. A. De Luca, R.F. Dantas, S. Esplugas, Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH, Appl. Catal., B., 179 (2015) 372–379.
  20. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe(III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A, Environ. Sci. Technol., 47 (2013) 1952–1959.
  21. X. Xue, K. Hanna, C. Despas, F. Wu, N. Deng, Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH, J. Mol. Catal. A: Chem., 311 (2009) 29–35.
  22. M.E. Benssassi, L. Mammeri, K. Talbi, B. Lekikot, T. Sehili, J.A. Santaballa, M. Canle, Removal of paracetamol in the presence of iron(III) complexes of glutamic and lactic acid in aqueous solution under NUV irradiation, Sep. Purif. Technol., 261 (2021) 118–195.
  23. I. Ghoul, N. Debbache, B.A. Dekkiche, N. Seraghni, T. Sehili, Z. Marín, J. A. Santaballa M. Canle, Fe(III)-citrate enhanced sunlight-driven photocatalysis of aqueous carbamazepine, J. Photochem. Photobiol., A, 378 (2019) 147–155.
  24. B.A. Dekkiche, N. Seraghni, N. Debbache, I. Ghoul, T. Sehili, Effect of natural and artificial light on Fe(III) organic complexes photolysis: case of Fe(III)-malonate and Fe(III)-malate, Int. J. Chem. Reactor Eng., 17 (2019), doi: 10.1515/ijcre-2018-0106.
  25. M.E. Benssassi, L. Mammeri, T. Sehili, M. Canle, First evidence of a photochemical process including an iron-aspartate complex and its use for paracetamol elimination from aqueous solution, J. Photochem. Photobiol., A, 409 (2021) 113–132.
  26. B.A. Dekkiche, N. Debbache, I. Ghoul, N. Seraghni, T. Sehili, Z. Marín, J.A. Santaballa, M. Canle, Evidence of non-photo- Fenton degradation of ibuprofen upon UVA irradiation in the presence of Fe(III)/malonate,
    J. Photochem. Photobiol., A, 382 (2019) 111–976.
  27. H. Dong, C. Sans, W. Li, Z. Qiang, Promoted discoloration of methyl orange in H2O2/Fe(III) Fenton system: effects of gallic acid on iron cycling, Sep. Purif. Technol., 171 (2016) 144–150.
  28. T. Pan, Y. Wang, X. Yang, X. Huang, R. Qiu, Gallic acid accelerated BDE47 degradation in PMS/Fe(III) system: oxidation intermediates autocatalyzed redox cycling of iron, Chem. Eng. J., 384 (2020) 123–248.
  29. Y. Sun, J.J. Pignatello, Chemical treatment of pesticide wastes. Evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH, J. Agric. Food Chem., 40 (1992) 322–327.
  30. A. De Luca, R.F. Dantas, S. Esplugas, Assessment of iron chelates efficiency for photo-Fenton at neutral pH, Water Res., 61 (2014) 232–242.
  31. C.M. Flynn, Hydrolysis of inorganic iron(III) salts, Chem. Rev., 84 (1984) 31–41.
  32. J. Kochany, J.R. Bolton, Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide, Environ. Sci. Technol., 26 (1992) 262–265.
  33. X. Liu, F. Wu, N. Deng, Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp, Environ. Sci. Technol., 38 (2004) 296–299.
  34. M. Andjelkovic, J.V. Camp, B.D. Meulenaer, G. Depaemelaere, C. Socaciu, M. Verloo, R. Verhe, Iron-chelation properties of phenolic acids bearing catechol and galloyl groups, Food Chem., 98 (2006) 23–31.
  35. M.S. Masoud, A.E. Ali, S.S. Haggag, N.M. Nasr, Spectroscopic studies on gallic acid and its azo derivatives and their iron(III) complexes, Spectrochim. Acta, Part A, 120 (2014) 505–511.
  36. A.E. Fazary, M. Taha, Y-H. Ju, Iron complexation studies of gallic acid, J. Chem. Eng. Data, 54 (2009) 35–42.
  37. M. Strlič, T. Radovič, J. Kolar, B. Pihlar, Anti- and prooxidative properties of gallic acid in Fenton-type systems, J. Agric. Food Chem., 50 (2002) 6313–6317.
  38. M.L. Hamlaoui, K. Vlassenko, D. Messadi, Stability constants of complexes of some transition metals with the unsaturated heteropolyanion [P2W17O61]10−, Acad. Sci., 311 (1990) 795–798.
  39. H. Powell, M. Taylor, Interactions of iron(II) and iron(III) with gallic acid and its homologues: a potentiometric and spectrophotometric study, Aust. J. Chem., 35 (1982) 739–756.
  40. F.J. Benitez, F.J. Real, J.L. Acero, A.I. Leal, C. Garcia, Gallic acid degradation in aqueous solutions by UV/H2O2 treatment, Fenton’s reagent and the photo-Fenton system, J. Hazard. Mater., 126 (2005) 31–39.
  41. Y. Liu, T. Qiu, Y. Wu, S. Wang, M. Liu, W. Dong, Remediation of soil contaminated with ibuprofen by persulfate activated with gallic acid and ferric iron, Chem. Eng. J., 127 (2020) 653–687.
  42. K.C. Christoforidis, I.A. Vasiliadou, M. Louloudi, Y. Deligiannakis, Gallic acid mediated oxidation of pentachlorophenol by the Fenton reaction under mild oxidative conditions, J. Chem. Technol. Biotechnol.,
    93 (2018) 1601–1610.
  43. S.V. Jovanovic, M.G. Simic, S. Steenken, Y. Hara, Iron complexes of gallocatechins. Antioxidant action or iron regulation, J. Chem. Soc., Perkin Trans. 2, (1998) 2365–2370.
  44. G.-C. Yen, P.-D. Duh, H.-L. Tsai, Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid, Food Chem., 79 (2002) 307–313.
  45. B.J. Sandmann, M.H. Chien, R.A. Sandmann, Stability constants of calcium, magnesium and zinc gallate using a divalent ionselective electrode, Anal. Lett., 18 (1985) 149–159.
  46. M. Pérez-Moya, M. Graells, L.J. del Valle, E. Centelles, H.D. Mansilla, Fenton and photo-Fenton degradation of
    2-chlorophenol: multivariate analysis and toxicity monitoring, Catal. Today, 124 (2007) 163–171.
  47. J-H. Sun, S-P. Sun, G-L. Wang, L-P. Qiao, Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process, Dyes Pigm., 74 (2007) 647–652.
  48. S-P. Sun, C-J. Li, J-H. Sun, S-H. Shi, M-H. Fan, Q. Zhou, Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study, J. Hazard. Mater., 161 (2009) 1052–1057.
  49. H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta, Y. Yobiko, Degradation of linuron in aqueous solution by the photo-Fenton reaction, Chem. Eng. J., 108 (2005) 269–276.
  50. E. Rodríguez, G. Fernández, B. Ledesma, P. Álvarez, F.J. Beltrán, Photocatalytic degradation of organics in water in the presence of iron oxides: influence of carboxylic acids, Appl. Catal., B, 92 (2009) 240–249.
  51. S-P. Sun, X. Zeng, A.T. Lemley, Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes, J. Hazard. Mater., 252–253 (2013) 155–165.
  52. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  53. W. Gernjak, T. Krutzler, A. Glaser, S. Malato, J. Caceres, R. Bauer, A.R. Fernandez-Alba, Photo-Fenton treatment of water containing natural phenolic pollutants, Chemosphere, 50 (2003) 71–78.