References
- J. Abdi, M. Yahyanezhad, S. Sakhaie, M. Vossoughi, I. Alemzadeh,
Synthesis of porous TiO2/ZrO2 photocatalyst derived from
zirconium metal organic framework for degradation of organic
pollutants under visible light irradiation, J. Environ. Chem.
Eng., 7 (2019) 103096, doi: 10.1016/j.jece.2019.103096.
- V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent
wastewater dye removal methods: a review, J. Environ. Chem.
Eng., 6 (2018) 4676–4697.
- I.A. Alaton, I.A. Balcioglu, Photochemical and heterogeneous
photocatalytic degradation of waste vinylsulphone dyes:
a case study with hydrolyzed Reactive Black 5, J. Photochem.
Photobiol., A,
141 (2001) 247–254.
- M.A. Tariq, M. Faisal, M. Muneer, Semiconductor-mediated
photocatalysed degradation of two selected azo dye derivatives,
amaranth and bismarck brown in aqueous suspension,
J. Hazard. Mater., 127 (2005) 172–179.
- E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic
decolorization and degradation of dye solutions and
wastewaters in the presence of titanium dioxide, J. Hazard.
Mater., 136 (2006) 85–94.
- D.F.M. Oliveira, P.S. Batista, P.S. Muller Jr., V. Velani, M.D. França,
D.R. de Souza, A.E.H. Machado, Evaluating the effectiveness of
photocatalysts based on titanium dioxide in the degradation of
the dye Ponceau 4R, Dyes Pigm., 92 (2012) 563–572.
- R.J. Tayade, H. Bajaj, R.V. Jasra, Photocatalytic removal of
organic contaminants from water exploiting tuned bandgap
photocatalysts, Desalination, 275 (2011) 160–165.
- M. Mohammadi, A. Maleki, S. Zandi, E. Mohammadi,
E. Ghahremani, J.K. Yang, S.M. Lee, Photocatalytic
decomposition of aqueous diazinon using reduced graphene/ZnO nanocomposite doped with manganese, Desal. Water
Treat., 184 (2020) 315–325.
- B.H. Fard, R.R. Khojasteh, P. Gharbani, Photocatalytic
degradation of Direct Red 16 dye using
Ag/Ag3VO4/AgVO3/GO
nanocomposite, S. Afr. J. Chem., 73 (2020) 1–8.
- A. Garmroudi, M. Kheirollahi, S.A. Mousavi, M. Fattahi,
E.H. Mahvelati, Effects of graphene oxide/TiO2 nanocomposite,
graphene oxide nanosheets and Cedr extraction solution on
IFT reduction and ultimate oil recovery from a carbonate rock,
Petroleum, (2020), doi: 10.1016/j.petlm.2020.10.002 (in press).
- M. Vaez, A. Zarringhalam Moghaddam, S. Alijani, Optimization
and modeling of photocatalytic degradation of azo dye using
a response surface methodology (RSM) based on the central
composite design with immobilized titania nanoparticles, Ind.
Eng. Chem. Res., 51 (2012) 4199–4207.
- A. Payan, M. Fattahi, B. Roozbehani, S. Jorfi, Enhancing
photocatalytic activity of nitrogen doped TiO2 for degradation
of 4-chlorophenol under solar light irradiation, Iran. J. Chem.
Eng., 15 (2018) 3–14.
- Y. Wang, C. Li, W. Tian, Y. Yang, Laser surface remelting of
plasma sprayed nanostructured Al2O3–13 wt.% TiO2 coatings
on titanium alloy, Appl. Surf. Sci., 255 (2009) 8603–8610.
- C. Anderson, A.J. Bard, Improved photocatalytic activity and
characterization of mixed TiO2/SiO2 and
TiO2/Al2O3 materials,
J. Phys. Chem. B, 101 (1997) 2611–2616.
- N. Dejang, A. Limpichaipanit, A. Watcharapasorn,
S. Wirojanupatump, P. Niranatlumpong, S. Jiansirisomboon,
Fabrication and properties of plasma-sprayed Al2O3/ZrO2
composite coatings, J. Therm. Spray Technol., 20 (2011)
1259–1268.
- L. Mo, P. Lyu, Z. Yang, J. Gong, K. Liu, J. Li, Photocatalytic
degradation of bagasse pulp wastewater
with La-TiO2/Al2O3 as
a catalyst, Desal. Water Treat, 187 (2020) 256–265.
- R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine,
A. Boudrioua, TiO2 thin films prepared by sol–gel method for
waveguiding applications: correlation between the structural
and optical properties, Opt. Mater., 30 (2007) 645–651.
- Ü.Ö.A. Arıer, F.Z. Tepehan, Controlling the particle size of
nanobrookite TiO2 thin films, J. Alloys Compd., 509 (2011)
8262–8267.
- X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis,
properties, modifications, and applications, Chem. Rev.,
107 (2007) 2891–2959.
- A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2
surfaces: principles, mechanisms, and selected results, Chem.
Rev., 95 (1995) 735–758.
- K. Nagaveni, M. Hegde, G. Madras, Structure and photocatalytic
activity of Ti1–xMxO2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized
by solution combustion method, J. Phys. Chem. B, 108 (2004)
20204–20212.
- P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped
nanocrystalline titania for photocatalysis, Appl. Catal., B,
73 (2007) 51–59.
- M.C. Wang, H.J. Lin, T.S. Yang, Characteristics and optical
properties of iron ion (Fe3+)-doped titanium oxide thin films
prepared by a sol–gel spin coating, J. Alloys Compd., 473 (2009)
394–400.
- C.Y. Wang, C. Böttcher, D.W. Bahnemann, J.K. Dohrmann,
A comparative study of nanometer sized Fe(III)-doped TiO2
photocatalysts: synthesis, characterization and activity, J. Mater.
Chem., 13 (2003) 2322–2329.
- J. Zhu, F. Chen, J. Zhang, H. Chen, M. Anpo, Fe3+-TiO2
photocatalysts prepared by combining sol–gel method
with hydrothermal treatment and their characterization,
J. Photochem. Photobiol., A, 180 (2006) 196–204.
- W.C. Hung, Y.C. Chen, H. Chu, T.K. Tseng, Synthesis
and characterization of TiO2 and Fe/TiO2 nanoparticles
and their performance for photocatalytic degradation of
1,2-dichloroethane, Appl. Surf. Sci., 255 (2008) 2205–2213.
- M.A. Khan, S.I. Woo, O.B. Yang, Hydrothermally stabilized
Fe(III) doped titania active under visible light for water splitting
reaction, Int. J. Hydrogen Energy, 33 (2008) 5345–5351.
- N. Dejang, A. Watcharapasorn, S. Wirojupatump,
P. Niranatlumpong, S. Jiansirisomboon, Fabrication and
properties of plasma-sprayed Al2O3/TiO2 composite coatings: a
role of nano-sized TiO2 addition, Surf. Coat. Technol., 204 (2010)
1651–1657.
- V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic
degradation using design of experiments: a review and example
of the Congo red degradation, J. Hazard. Mater., 175 (2010)
33–44.
- M.N. Chong, B. Jin, C.W. Chow, C.P. Saint, A new approach
to optimise an annular slurry photoreactor system for the
degradation of Congo Red: statistical analysis and modelling,
Chem. Eng. J., 152 (2009) 158–166.
- D. Vildozo, C. Ferronato, M. Sleiman, J.M. Chovelon,
Photocatalytic treatment of indoor air: optimization of
2-propanol removal using a response surface methodology
(RSM), Appl. Catal., B, 94 (2010) 303–310.
- A. Khataee, M. Fathinia, S. Aber, M. Zarei, Optimization of
photocatalytic treatment of dye solution on supported TiO2
nanoparticles by central composite design: intermediates
identification, J. Hazard. Mater., 181 (2010) 886–897.
- D. Tekin, T. Tekin, H. Kiziltaş, Synthesis and characterization of
TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency
in the photocatalytic degradation kinetics of Orange G
dyestuff, Desal. Water Treat., 198 (2020) 376–385.
- T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Fe and Ni co-doped
TiO2 nanoparticles prepared by alcohol-thermal method:
application in hydrogen evolution by water splitting under
visible light irradiation, Powder Technol., 228 (2012) 210–218.
- Y. Yalçın, M. Kılıç, Z. Çınar, Fe3+-doped TiO2: a combined
experimental and computational approach to the evaluation of
visible light activity, Appl. Catal., B, 99 (2010) 469–477.
- E. Barajas-Ledesma, M.L. García-Benjume, I. Espitia-Cabrera,
M. Ortiz-Gutiérrez, F.J. Espinoza-Beltrán,
J. Mostaghimi,
M.E. Contreras-García, Determination of the band gap of TiO2–Al2O3 films as a function of processing parameters, Mater. Sci.
Eng., B, 174 (2010) 71–73.
- P.N. Panahi, S. Babaei, M.H. Rasoulifard, Synthesis and visiblelight
photocatalytic activity of nanoperovskites and exploration
of silver decoration to enhance photocatalytic efficiency,
Desal. Water Treat., 194 (2020) 194–202.
- M. Hu, X. Wang, H. Liu, N. Li, T. Li, R. Zhang, D. Chen, Visiblelight-
driven photodegradation of aqueous organic pollutants
by Ag/AgCl@Zn3V2O8 nanocomposites, Desal. Water Treat.,
86 (2017) 102–114.
- J.Y. Kim, S.H. Kang, H.S. Kim, Y.E. Sung, Preparation of highly
ordered mesoporous Al2O3/TiO2 and its application in dyesensitized
solar cells, Langmuir, 26 (2009) 2864–2870.
- V. Barahimi, H. Moghimi, R.A. Taheri, Cu doped TiO2-Bi2O3
nanocomposite for degradation of azo dye in aqueous solution:
process modeling and optimization using central composite
design, J. Environ. Chem. Eng.,
7 (2019) 103078, doi: 10.1016/j.
jece.2019.103078.
- E.L. Pereira, A.C. Borges, F.F. Heleno, K.R. de Oliveira,
G.J. da Silva, A.H. Mounteer, Central composite rotatable
design for startup optimization of anaerobic sequencing batch
reactor treating biodiesel production wastewater, J. Environ.
Chem. Eng., 7 (2019) 103038, doi: 10.1016/j.jece.2019.103038.
- M.Y. Noordin, V.C. Venkatesh, S. Sharif, S. Elting, A. Abdullah,
Application of response surface methodology in describing the
performance of coated carbide tools when turning AISI 1045
steel, J. Mater. Process. Technol., 145 (2004) 46–58.
- R.D.C. Soltani, A. Rezaee, H. Godini, A.R. Khataee,
A. Hasanbeiki, Photoelectrochemical treatment of ammonium
using seawater as a natural supporting electrolyte, Chem. Ecol.,
29 (2013) 72–85.
- B.K. Körbahti, M.A. Rauf, Determination of optimum operating
conditions of carmine decoloration
by UV/H2O2 using response
surface methodology, J. Hazard. Mater., 161 (2009) 281–286.
- L. Wei, C. Shifu, Z. Wei, Z. Sujuan, Titanium dioxide mediated
photocatalytic degradation of methamidophos in aqueous
phase, J. Hazard. Mater., 164 (2009) 54–160.
- A.M. Soylu, M. Polat, D.A. Erdogan, Z. Say, C. Yıldırım,
O. Birer, E. Ozensoy, TiO2–Al2O3 binary mixed oxide surfaces
for photocatalytic NOx abatement, Appl. Surf. Sci., 318 (2014)
142–149.
- S. Xu, X. Zhang, J. Ng, D.D. Sun, Preparation and application
of TiO2/Al2O3 microspherical photocatalyst for water treatment,
Water Sci. Technol. Water Supply, 9 (2009) 39–44.
- A.H. Haghighaty, S.M. Dehaghi, Resistant in alkaline media
core-shell photocatalyst of Fe(TiO2/Al2O3) for degradation of
water pollutant, Orient. J. Chem., 34 (2018) 1046, doi : 10.13005/ojc/340256.