References
- P.H. Gleick, Water in Crisis: A Guide to the World’s Fresh Water
Resources, Oxford University Press, New York, 1993.
- M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis,
B.J. Mariñas, A.M. Mayes, Science and technology for water
purification in the coming decades, Nature, 452 (2008) 301–310.
- D. Xevgenos, K. Moustakas, D. Malamis, M. Loizidou,
An overview on desalination and sustainability: renewable
energy-driven desalination and brine management, Desal.
Water. Treat., 57 (2014) 2304–2314.
- D. Xevgenos, M. Marcou, V. Louca, E. Avramidi, G. Ioannou,
M. Argyrou, P. Stavrou, M. Mortou, F.C. Küpper, Aspects of
environmental impacts of seawater desalination: Cyprus as a
case study, Desal. Water Treat., 211 (2021) 15–30.
- S. Herrera-León, C. Cruz, A. Kraslawski, L.A. Cisternas,
Current situation and major challenges of desalination in Chile,
Desal. Water Treat., 171 (2019) 93–104.
- P.R. Kidambi, D. Jang, J.C. Idrobo, M.S.H. Boutilier, L. Wang,
J. Kong, R. Karnik, Nanoporous atomically thin graphene
membranes for desalting and dialysis applications, Adv. Mater.,
29 (2017) 1700277,
doi: 10.1002/adma.201700277.
- A. Kalra, S. Garde, G. Hummer, Osmotic water transport
through carbon nanotube membranes, Proc. Natl. Acad. Sci.
U.S.A., 100 (2003) 10175–10180.
- E.Y.M. Ang, T.Y. Ng, J. Yeo, Z. Liu, K.R. Geethalakshmi, Freestanding
graphene slit membrane for enhanced desalination,
Carbon, 110 (2016) 350–355.
- D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a
reverse osmosis membrane: recent insights from theory and
simulation, Desalination, 366 (2015) 59–70.
- M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination
with a single-layer MoS2 nanopore, Nat. Commun., 6 (2015)
8616, doi: 10.1038/ncomms9616.
- R.H. Tunuguntl, R.Y. Henley, Y.C. Yao, T.A. Pham, M. Wanunu,
A. No, Enhanced water permeability and tunable ion selectivity
in subnanometer carbon nanotube porins, Science, 357 (2017)
792–796.
- E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet,
Massive radius-dependent flow slippage in carbon nanotubes,
Nature, 537 (2016) 210–213.
- J.K. Holt, Carbon nanotubes and nanofluidic transport, Adv.
Mater., 21 (2009) 3542–3550.
- M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale
hydrodynamics: enhanced flow in carbon nanotubes, Nature,
438 (2005) 44, doi: 10.1038/438044a.
- C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, S.-H. Kim,
S.S. Bae, J. Park, J. Yoon, Carbon nanotube-based membranes:
Fabrication and application to desalination, J. Ind. Eng. Chem.,
18 (2012) 1551–1559.
- S. Trivedi, K. Alameh, Effect of vertically aligned carbon
nanotube density on the water flux and salt rejection in
desalination membranes, Springerplus, 5 (2016) 1158,
doi: 10.1186/s40064-016-2783-3.
- R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury,
Carbon nanotube membranes for water purification: A bright
future in water desalination, Desalination, 336 (2014) 97–109.
- B. Corry, Designing carbon nanotube membranes for efficient
water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
- E.Y.M. Ang, T.Y. Ng, J. Yeo, R. Lin, K.R. Geethalakshmi, Nanoscale
fluid mechanics working principles of transverse flow carbon
nanotube membrane for enhanced desalination, Int. J. Appl.
Mech., 9 (2017) 1750034, doi: 10.1142/S175882511750034X.
- S. Gravelle, L. Joly, C. Ybert, L. Bocquet, Large permeabilities
of hourglass nanopores: from hydrodynamics to single file
transport, J. Chem. Phys., 141 (2014) 18C526.
- S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys., 117 (1995) 1–19.
- M. Patra, M. Karttunen, Systematic comparison of force fields
for microscopic simulations of NaCl in aqueous solutions:
diffusion, free energy of hydration and structural properties,
J. Comput. Chem., 25 (2004) 1–13.
- M. Rezaei, A.R. Azimian, A.R. Pishevar, Surface chargedependent
hydrodynamic properties of an electroosmotic slip
flow, Phys. Chem. Chem. Phys., 20 (2018) 30365–30375.
- W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinson, Computer
Simulation of Biomolecular Systems: Theoretical and
Experimental Applications, Springer, Netherlands, 1997.
- R.W. Hockney, J.W. Eastwood, Computer Simulation Using
Particle, CRC Press, Boca Raton, 1988.
- B. Hess, C. Holm, N. van der Vegt, Osmotic coefficients of
atomistic NaCl (aq) force fields, J. Chem. Phys., 124 (2006)
164509, doi: doi: 10.1063/1.2185105.
- D. Cohen-Tanugi, J.C. Grossman, Water desalination across
nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
- H. Liu, Y. Liu, J. Dai, Q. Cheng, An improved model of carbon
nanotube conveying flow by considering comprehensive effects
of Knudsen number, Microfluid. Nanofluid., 22 (2018) 66,
doi: 10.1007/s10404-018-2088-7.
- F. Kaviani, H.R. Mirdamadi, Influence of Knudsen number on
fluid viscosity for analysis of divergence in fluid conveying
nano-tubes, Comp. Mater. Sci., 61 (2012) 270–277.
- B. Chen, H. Jiang, X. Liu, X. Hu, Molecular insight into water
desalination across multilayer graphene oxide membranes,
ACS Appl. Mater. Interfaces, 9 (2017) 22826–22836.
- B. Chen, H. Jiang, X. Liu, X. Hu, Observation and analysis of
water transport through graphene oxide interlamination,
J. Phys. Chem. C, 121 (2017) 1321–1328.
- A. Maali, T. Cohen-Bouhacina, H. Kellay, Measurement of the
slip length of water flow on graphite surface, Appl. Phys. Lett.,
92 (2008) 053101.
- N. Wei, X. Peng, Z. Xu, Breakdown of fast water transport in
graphene oxides, Phys. Rev. E: Stat. Nonlinear Soft Matter
Phys., 89 (2014) 012113.
- N. Wei, X. Peng, Z. Xu, Understanding water permeation in
graphene oxide membranes, ACS Appl. Mater. Interfaces,
6 (2014) 5877–5883.
- E.M. Kotsalis, J.H. Walther, P. Koumoutsakos, Multiphase water
flow inside carbon nanotubes, Int. J. Multiphase Flow, 30 (2004)
995–1010.
- M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular
sieving, and ion diffusion selectivity of a lamellar membrane
from two-dimensional molybdenum disulfide, Nano Lett.,
17 (2017) 2342–2348.
- S. Jiao, Z. Xu, Non-continuum intercalated water diffusion
explains fast permeation through graphene oxide membranes,
ACS Nano, 11 (2017) 11152–11161.
- S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, Solvent
structure, dynamics, and ion mobility in aqueous solutions at
25°C, J. Chem. Phys. B, 102 (1998) 4193–4204.
- Y. Wang, Z. He, K.M. Gupta, Q. Shi, R. Lu, Molecular dynamics
study on water desalination through functionalized nanoporous
graphene, Carbon, 116 (2017) 120–127.
- Y. Liu, D. Xie, M. Song, L. Jiang, G. Fu, L. Liu, J. Li, Water
desalination across multilayer graphitic carbon nitride
membrane: insights from non-equilibrium molecular dynamics
simulations, Carbon, 140 (2018) 131–138.
- W. Li, W. Wang, Y. Zhang, Y. Yan, P. Král, J. Zhang, Highly
efficient water desalination in carbon nanocones, Carbon,
129 (2018) 374–379.
- M. Hu, B. Mi, Enabling graphene oxide nanosheets as water
separation membranes, Environ. Sci. Technol., 47 (2013)
3715–3723.
- D. Cohen-Tanugi, L.C. Lin, J.C. Grossman, Multilayer
nanoporous graphene membranes for water desalination, Nano
Lett., 16 (2016) 1027–1033.
- W. Li, Y. Yang, J.K. Weber, G. Zhang, R. Zhou, Tunable, straincontrolled
nanoporous MoS2 filter for water desalination,
ACS Nano, 10 (2016) 1829–1835.