References

  1. P.H. Gleick, Water in Crisis: A Guide to the World’s Fresh Water Resources, Oxford University Press, New York, 1993.
  2. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  3. D. Xevgenos, K. Moustakas, D. Malamis, M. Loizidou, An overview on desalination and sustainability: renewable energy-driven desalination and brine management, Desal. Water. Treat., 57 (2014) 2304–2314.
  4. D. Xevgenos, M. Marcou, V. Louca, E. Avramidi, G. Ioannou, M. Argyrou, P. Stavrou, M. Mortou, F.C. Küpper, Aspects of environmental impacts of seawater desalination: Cyprus as a case study, Desal. Water Treat., 211 (2021) 15–30.
  5. S. Herrera-León, C. Cruz, A. Kraslawski, L.A. Cisternas, Current situation and major challenges of desalination in Chile, Desal. Water Treat., 171 (2019) 93–104.
  6. P.R. Kidambi, D. Jang, J.C. Idrobo, M.S.H. Boutilier, L. Wang, J. Kong, R. Karnik, Nanoporous atomically thin graphene membranes for desalting and dialysis applications, Adv. Mater., 29 (2017) 1700277,
    doi: 10.1002/adma.201700277.
  7. A. Kalra, S. Garde, G. Hummer, Osmotic water transport through carbon nanotube membranes, Proc. Natl. Acad. Sci. U.S.A., 100 (2003) 10175–10180.
  8. E.Y.M. Ang, T.Y. Ng, J. Yeo, Z. Liu, K.R. Geethalakshmi, Freestanding graphene slit membrane for enhanced desalination, Carbon, 110 (2016) 350–355.
  9. D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation, Desalination, 366 (2015) 59–70.
  10. M. Heiranian, A.B. Farimani, N.R. Aluru, Water desalination with a single-layer MoS2 nanopore, Nat. Commun., 6 (2015) 8616, doi: 10.1038/ncomms9616.
  11. R.H. Tunuguntl, R.Y. Henley, Y.C. Yao, T.A. Pham, M. Wanunu, A. No, Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357 (2017) 792–796.
  12. E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537 (2016) 210–213.
  13. J.K. Holt, Carbon nanotubes and nanofluidic transport, Adv. Mater., 21 (2009) 3542–3550.
  14. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438 (2005) 44, doi: 10.1038/438044a.
  15. C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, S.-H. Kim, S.S. Bae, J. Park, J. Yoon, Carbon nanotube-based membranes: Fabrication and application to desalination, J. Ind. Eng. Chem., 18 (2012) 1551–1559.
  16. S. Trivedi, K. Alameh, Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes, Springerplus, 5 (2016) 1158, doi: 10.1186/s40064-016-2783-3.
  17. R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination, 336 (2014) 97–109.
  18. B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
  19. E.Y.M. Ang, T.Y. Ng, J. Yeo, R. Lin, K.R. Geethalakshmi, Nanoscale fluid mechanics working principles of transverse flow carbon nanotube membrane for enhanced desalination, Int. J. Appl. Mech., 9 (2017) 1750034, doi: 10.1142/S175882511750034X.
  20. S. Gravelle, L. Joly, C. Ybert, L. Bocquet, Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport, J. Chem. Phys., 141 (2014) 18C526.
  21. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117 (1995) 1–19.
  22. M. Patra, M. Karttunen, Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: diffusion, free energy of hydration and structural properties, J. Comput. Chem., 25 (2004) 1–13.
  23. M. Rezaei, A.R. Azimian, A.R. Pishevar, Surface chargedependent hydrodynamic properties of an electroosmotic slip flow, Phys. Chem. Chem. Phys., 20 (2018) 30365–30375.
  24. W.F. van Gunsteren, P.K. Weiner, A.J. Wilkinson, Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Springer, Netherlands, 1997.
  25. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particle, CRC Press, Boca Raton, 1988.
  26. B. Hess, C. Holm, N. van der Vegt, Osmotic coefficients of atomistic NaCl (aq) force fields, J. Chem. Phys., 124 (2006) 164509, doi: doi: 10.1063/1.2185105.
  27. D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
  28. H. Liu, Y. Liu, J. Dai, Q. Cheng, An improved model of carbon nanotube conveying flow by considering comprehensive effects of Knudsen number, Microfluid. Nanofluid., 22 (2018) 66, doi: 10.1007/s10404-018-2088-7.
  29. F. Kaviani, H.R. Mirdamadi, Influence of Knudsen number on fluid viscosity for analysis of divergence in fluid conveying nano-tubes, Comp. Mater. Sci., 61 (2012) 270–277.
  30. B. Chen, H. Jiang, X. Liu, X. Hu, Molecular insight into water desalination across multilayer graphene oxide membranes, ACS Appl. Mater. Interfaces, 9 (2017) 22826–22836.
  31. B. Chen, H. Jiang, X. Liu, X. Hu, Observation and analysis of water transport through graphene oxide interlamination, J. Phys. Chem. C, 121 (2017) 1321–1328.
  32. A. Maali, T. Cohen-Bouhacina, H. Kellay, Measurement of the slip length of water flow on graphite surface, Appl. Phys. Lett., 92 (2008) 053101.
  33. N. Wei, X. Peng, Z. Xu, Breakdown of fast water transport in graphene oxides, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 89 (2014) 012113.
  34. N. Wei, X. Peng, Z. Xu, Understanding water permeation in graphene oxide membranes, ACS Appl. Mater. Interfaces, 6 (2014) 5877–5883.
  35. E.M. Kotsalis, J.H. Walther, P. Koumoutsakos, Multiphase water flow inside carbon nanotubes, Int. J. Multiphase Flow, 30 (2004) 995–1010.
  36. M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano Lett., 17 (2017) 2342–2348.
  37. S. Jiao, Z. Xu, Non-continuum intercalated water diffusion explains fast permeation through graphene oxide membranes, ACS Nano, 11 (2017) 11152–11161.
  38. S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, Solvent structure, dynamics, and ion mobility in aqueous solutions at 25°C, J. Chem. Phys. B, 102 (1998) 4193–4204.
  39. Y. Wang, Z. He, K.M. Gupta, Q. Shi, R. Lu, Molecular dynamics study on water desalination through functionalized nanoporous graphene, Carbon, 116 (2017) 120–127.
  40. Y. Liu, D. Xie, M. Song, L. Jiang, G. Fu, L. Liu, J. Li, Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations, Carbon, 140 (2018) 131–138.
  41. W. Li, W. Wang, Y. Zhang, Y. Yan, P. Král, J. Zhang, Highly efficient water desalination in carbon nanocones, Carbon, 129 (2018) 374–379.
  42. M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol., 47 (2013) 3715–3723.
  43. D. Cohen-Tanugi, L.C. Lin, J.C. Grossman, Multilayer nanoporous graphene membranes for water desalination, Nano Lett., 16 (2016) 1027–1033.
  44. W. Li, Y. Yang, J.K. Weber, G. Zhang, R. Zhou, Tunable, straincontrolled nanoporous MoS2 filter for water desalination, ACS Nano, 10 (2016) 1829–1835.