References
- J.L. Wang, L.J. Xu, Advanced oxidation processes for wastewater
treatment: formation of hydroxyl radical and application,
Crit. Rev. Env. Sci. Technol., 42 (2012) 251–325.
- Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in
wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
- M. Gągol, A. Przyjazny, G. Boczkaj, Wastewater treatment by
means of advanced oxidation processes based on cavitation – a
review, Chem. Eng. J., 338 (2018) 599–627.
- R. Dewil, D. Mantzavinos, I. Poulios, M.A. Rodrigo, New
perspectives for advanced oxidation processes, J. Environ.
Manage., 195 (2017) 93–99.
- M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in
water/wastewater treatment: Principles and applications.
A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
- S. Gligorovski, R. Strekowski, S. Barbati, D. Vione,
Environmental implications of hydroxyl radicals (•OH), Chem.
Rev., 115 (2015) 13051–13092.
- E. Peralta, G. Roa, J.A.H. Servin, R. Romero, P. Balderas,
R. Natividad, Hydroxyl radicals quantification by UV
spectrophotometry, Electrochim. Acta, 129 (2014) 137–141.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous
solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–526.
- T. Tobien, M. Bonifaić, S. Naumov, K.D. Asmus, Time-resolved
study on the reactions of organic selenides with hydroxyl and
oxide radicals, hydrated electrons, and H-atoms in aqueous
solution, and DFT calculations of transients in comparison
with sulfur analogues, Phys. Chem. Chem. Phys., 12 (2010)
6750–6758.
- N. Bensalah, R. Nicola, A.A. Wahab, Nitrate removal from water
using UV-M/S2O42– advanced reduction process, Int. J. Environ.
Sci. Technol., 11 (2014) 1733–1742.
- B.P. Vellanki, B. Batchelor, A.A. Wahab, Advanced reduction
processes: a new class of treatment processes, Environ. Eng.
Sci., 30 (2013) 264–271.
- B.P. Vellanki, B. Batchelor, Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process,
J. Hazard. Mater.,
262 (2013) 348–356.
- X. Liu, B.P. Vellanki, B. Batchelor, A.A. Wahab, Degradation of
1,2-dichloroethane with advanced reduction processes (ARPs):
effects of process variables and mechanisms, Chem. Eng. J.,
237 (2014) 300–307.
- X. Liu, S. Yoon, B. Batchelor, A.A. Wahab, Degradation of vinyl
chloride (VC) by the sulfite/UV advanced reduction process
(ARP): effects of process variables and a kinetic model, Sci. Total
Environ., 454–455 (2013) 578–583.
- B. Jung, A. Safan, Y. Duan, V. Kaushik, B. Batchelor, A.A. Wahab,
Removal of arsenite by reductive precipitation in dithionite
solution activated by UV light, J. Environ. Sci. (China), 74 (2018)
168–176.
- B. Jung, A. Safan, Y. Duan, V. Kaushik, B. Batchelor, A.A. Wahab,
Removal of Se(IV) by the dithionite/ultraviolet advanced
reduction process: effects of process variables, Environ. Eng.
Sci., 35 (2018) 927–936.
- Y. Duan, G. Luo, B. Jung, V. Kaushik, B. Batchelor, A.A. Wahab,
Photochemical degradation of arsenic and selenium with
advanced reduction processes – effects of reagents,
Environ. Eng. Sci., 34 (2017) 481–488.
- V.S.V. Botlaguduru, B. Batchelor, A.A. Wahab, Application of
UV-sulfite advanced reduction process to bromate removal,
J. Water Process Eng., 5 (2015) 76–82.
- Q. Xiao, S. Yu, L. Li, T. Wang, X. Liao, Y. Ye, An overview
of advanced reduction processes for bromate removal
from drinking water: reducing agents, activation methods,
applications and mechanisms, J. Hazard. Mater., 324B (2017)
230–240.
- X. Liu, S. Yoon, B. Batchelor, A.A. Wahab, Photochemical
degradation of vinyl chloride with an advanced reduction
process (ARP) – effects of reagents and pH, Chem. Eng. J.,
215–216 (2013) 868–875.
- Q. Xiao, T. Wang, S. Yu, P. Yi, L. Li, Influence of UV lamp,
sulfur(IV) concentration, and pH on bromate degradation in
UV/sulfite systems: mechanisms and applications, Water Res.,
111 (2017) 288–296.
- S. Yang, Y. Zhang, D. Zheng, Advanced reduction processes: a
novel technology for water treatment, Prog. Chem., 28 (2016)
934–941.
- B. Jung, A. Safan, V.S.V. Botlaguduru, B. Batchelor, A.A. Wahab,
Impact of natural organic matter on bromate removal in the
sulfite/UV-L advanced reduction process, Water Sci. Technol.
Water Supply, 17 (2017) 461–471.
- L. Ye, H. You, J. Yao, H. Su, Water treatment technologies for
perchlorate: a review, Desalination, 298 (2012) 1–12.
- K. Ranguelova, R.P. Mason, New insights into the detection of
sulfur trioxide anion radical by spin trapping: radical trapping
versus nucleophilic addition, Free Radical. Biol. Med., 47 (2009)
128–134.
- F.H. Getman, The ultraviolet absorption spectra of aqueous
solutions of sulphur dioxide and some of its derivatives, J. Phys.
Chem., 30 (1926) 266–276.
- M. Fischer, P. Warneck, Photodecomposition and
photooxidation of hydrogen sulfite in aqueous solution,
J. Phys.
Chem., 100 (1996) 15111–15117.
- K. Hara, K. Sayama, H. Arakawa, UV photoinduced reduction
of water to hydrogen in Na2S, Na2SO3, and
Na2S2O4 aqueous
solutions, J. Photochem. Photobiol., A, 128 (1999) 27–31.
- O.P. Chawla, N.L. Arthur, R.W. Fessenden, An electron spin
resonance study of the photolysis of aqueous sulfite solutions,
J. Phys. Chem., 77 (1973) 772–776.
- A.S. Jeevarajan, R.W. Fessenden, ESR studies of solvated
electron in liquid solution using photolytic production, J. Phys.
Chem., 93 (1989) 3511–3514.
- R.S. Pemberton, M.C. Depew, C. Heitner, J.K.S. Wan, Some
mechanistic insights into a model bleaching process of quinones
by bisulfite and dithionite: an ESR-CIDEP study, J. Wood Chem.
Technol., 15 (1995) 65–83.
- B. Kettlitz, G. Kemendi, N. Thorgrimsson, N. Cattoor,
L. Verzegnassi, Y.L.B. Collet, F. Maphosa, A. Perrichet,
B. Christall, R.H. Stadler, Why chlorate occurs in potable water
and processed foods: a critical assessment and challenges faced
by the food industry, Food Addit. Contam., Part A, 33 (2016)
968–982.
- R. Aranda-Rodriguez, F. Lemieux, Z. Jin, J. Hnatiw,
A.-M. Tugulea, (Yet more) challenges for water treatment
plants: potential contribution of hypochlorite solutions to
bromate, chlorate, chlorite and perchlorate in drinking water,
J. Water Supply Res. Technol. AQUA, 66 (2017) 621–631.
- D. Wang, J.R. Bolton, S.A. Andrews, R. Hofmann, Formation of
disinfection by-products in the ultraviolet/chlorine advanced
oxidation process, Sci. Total Environ., 518–519 (2015) 49–57.
- S.D. Richardson, A.D. Thruston, T.V. Caughran, P.H. Chen,
T.W. Collette, K.M. Schenck, B.W. Lykins Jr.,
C. Rav-Acha,
V. Glezer, Identification of New Drinking Water Disinfection
By-products from Ozone,
Chlorine dioxide, Chloramine, and
Chlorine, S. Belkin, Ed., Environmental Challenges, Springer,
Dordrecht, 2000, pp. 95–102.
- S.W. Krasner, H.S. Weinberg, S.D. Richardson, S.J. Pastor,
R. Chinn, M.J. Sclimenti, G.D. Onstad, A.D. Thruston,
Occurrence of a new generation of disinfection byproducts,
Environ. Sci. Technol., 40 (2006) 7175–7185.
- G. Hua, D.A. Reckhow, Comparison of disinfection byproduct
formation from chlorine and alternative disinfectants, Water
Res., 41 (2007) 1667–1678.
- A. Breytus, S. Prabakar, A.P. Kruzic, Chapter 7 – Fate of Chlorate
and Perchlorate in High-Strength and Diluted Hypochlorite
Solutions, K.R. Evans, E.S. Roberts-Kirchhoff, M.A. Benvenuto,
K.C. Lanigan, A. Rihana-Abdallah, Eds., Trace Materials in Air,
Soil, and Water, ACS Symposium Series, 2015, pp. 155–174.
- B.D. Stanford, A.N. Pisarenko, S.A. Snyder, G. Gordon, Perchlorate,
bromate, and chlorate in hypochlorite solutions: guidelines for
utilities, J. AWWA, 103 (2011) 71–83.
- S. Sorlini, F. Gialdini, M. Biasibetti, C. Collivignarelli, Influence
of drinking water treatments on chlorine dioxide consumption
and chlorite/chlorate formation, Water Res., 54 (2014) 44–52.
- X. Yang, W. Guo, X. Zhang, F. Chen, T. Ye, W. Liu, Formation
of disinfection by-products after pre-oxidation with chlorine
dioxide or ferrate, Water Res., 47 (2013) 5856–5864.
- J. Yi, Y. Ahn, M. Hong, G.H. Kim, N. Shabnam, B. Jeon, B.I. Sang,
H. Kim, Comparison between OCl–-injection and in situ
electrochlorination in the formation of chlorate and perchlorate
in seawater, Appl. Sci., 9 (2019) 229–240.
- J. Radjenovic, M. Petrovic, Removal of sulfamethoxazole by
electrochemically activated sulfate: implications of chloride
addition, J. Hazard. Mater., 333 (2017) 242–249.
- E. Righi, G. Fantuzzi, G. Predieri, G. Aggazzotti, Bromate,
chlorite, chlorate, haloacetic acids, and trihalomethanes
occurrence in indoor swimming pool waters in Italy, Microchem.
J., 113 (2014) 23–29.
- W.A. Jackson, A.F. Davila, D.W.G. Sears, J.D. Coates, C.P. McKay,
M. Brundrett, N. Estrada, J.K. Böhlke, Widespread occurrence
of (per)chlorate in the solar system, Earth Planet. Sci. Lett.,
430 (2015) 470–476.
- R. Michalski, B. Mathews, Occurrence of chlorite, chlorate and
bromate in disinfected swimming pool water, Pol. J. Environ.
Stud., 16 (2007) 237–241.
- M. Mastrocicco, D. Di Giuseppe, F. Vincenzi, N. Colombani,
G. Castaldelli, Chlorate origin and fate in shallow groundwater
below agricultural landscapes, Environ. Pollut., 231 (2017)
1453–1462.
- H. Khasawneh, M.N. Saidan, M.A. Addous, Utilization of
hydrogen as clean energy resource in chlor-alkali process,
Energy Explor. Exploit., 37 (2019) 1053–1072.
- B. Endrődi, N. Simic, M. Wildlock, A. Cornell, A review of
chromium(VI) use in chlorate electrolysis: functions, challenges
and suggested alternatives, Electrochim. Acta, 234 (2017)
108–122.
- M.I. Gil, A. Marín, S. Andujar, A. Allende, Should chlorate
residues be of concern in fresh-cut salads?, Food Control.,
60 (2016) 416–421.
- D. Feretti, I. Zerbini, E. Ceretti, M. Villarini, C. Zani, M. Moretti,
C. Fatigoni, G. Orizio, F. Donato, S. Monarca, Evaluation of
chlorite and chlorate genotoxicity using plant bioassays and in
vitro DNA damage tests, Water Res., 42 (2008) 4075–4082.
- A. Hebert, D. Forestier, D. Lenes, D. Benanou, S. Jacob,
C. Arfi, L. Lambolez, Y. Levi, Innovative method for prioritizing
emerging disinfection by-products (DBPs) in drinking water on
the basis of their potential impact on public health, Water Res.,
44 (2010) 3147–3165.
- Y. Garrido, A. Marín, J.A. Tudela, P. Truchado, A. Allende,
M.I. Gil, Chlorate accumulation in commercial lettuce cultivated
in open field and irrigated with reclaimed water, Food Control.,
114 (2020) 107283–107288.
- K. Alfredo, B. Stanford, J.A. Roberson, A. Eaton, Chlorate
challenges for water systems, J. Am. Water Works Assn.,
107 (2015) E187–E196.
- W.P. McCarthy, T.F. O’Callaghan, M. Danahar, D. Gleeson,
C. O’Connor, M.A. Fenelon, J.T. Tobin, Chlorate and other
oxychlorine contaminants within the dairy supply chain,
Compr. Rev. Food Sci. Food Saf., 17 (2018) 1561–1575.
- K. Alfredo, The potential regulatory implications of chlorate,
J. AWWA., 107 (2014) E187–E196.
- S.A. Trammell, L.C.S. Lake, W.J. Dressick, Statistical evaluation
of an electrochemical probe for the detection of chlorate, Sens.
Actuators, B, 239 (2017) 951–961.
- E. Righi, P. Bechtold, D. Tortorici, P. Lauriola, E. Calzolari,
G. Astolfi, M.J. Nieuwenhuijsen, G. Fantuzzi, G. Aggazzotti,
Trihalomethanes, chlorite, chlorate in drinking water and risk
of congenital anomalies: a population-based case-control study
in Northern Italy, Environ. Res., 116 (2012) 66–73.
- B.I. Delpla, M.J. Rodriguez, R. Sadiq, Drinking-water
management in Canadian provinces and territories: a review
and comparison of management approaches for ensuring safe
drinking water, Water Policy, 20 (2018) 565–596.
- R. Srinivasan, G. Sorial, E.S. Demessie, Removal of perchlorate
and chlorate in aquatic systems using integrated technologies,
Environ. Eng. Sci., 26 (2009) 1661–1671.
- N. Gonce, E.A. Voudrias, Removal of chlorite and chlorate
ions from water using granular activated carbon, Water Res.,
28 (1994) 1059–1069.
- P. Westerhoff, Reduction of nitrate, bromate, and chlorate
by zero valent iron (Fe0), J. Environ. Eng., 129 (2003) 10–16,
doi: 10.1061/(ASCE)0733–9372.
- C.I. Carlström, D. Loutey, S. Bauer, I.C. Clark, R.A. Rohde,
A.T. Iavarone, L. Lucas, J.D. Coates,
(Per)chlorate-reducing
bacteria can utilize aerobic and anaerobic pathways of aromatic
degradation with (per)chlorate as an electron acceptor, MBio.,
6 (2015) e02287–14.
- M.G. Liebensteiner, M.W.H. Pinkse, B. Nijsse, P.D.E.M.
Verhaert, N. Tsesmetzis, A.J.M. Stams, B.P. Lomans, Perchlorate
and chlorate reduction by the Crenarchaeon Aeropyrum pernix
and two thermophilic Firmicutes, Environ. Microbiol. Rep.,
7 (2015) 936–945.
- O. Wang, J. Coates, Biotechnological applications of microbial
(per)chlorate reduction, Microorganisms, 5 (2017) 76–84.
- C.G.V. Ginkel, C.M. Plugge, C.A. Stroo, Reduction of chlorate
with various energy substrates and inocula under anaerobic
conditions, Chemosphere, 31 (1995) 4057–4066.
- S. Sorlini, C. Collivignarelli, Chlorite removal with ferrous ions,
Desalination, 176 (2005) 267–271.
- L.I. Kuznetsova, N.I. Kuznetsova, S.V. Koscheev, V.I. Zaikovskii,
A.S. Lisitsyn, K.M. Kaprielova, N.V. Kirillova,
Z. Twardowski,
Carbon-supported iridium catalyst for reduction of chlorate
ions with hydrogen in concentrated solutions of sodium
chloride, Appl. Catal., A, 427–428 (2012) 8–15.
- D. Shuai, B.P. Chaplin, J.R. Shapley, N.P. Menendez,
D.C. McCalman, W.F. Schneider, C.J. Werth, Enhancement of
oxyanion and diatrizoate reduction kinetics using selected azo
dyes on Pd-based catalysts, Environ. Sci. Technol., 44 (2010)
1773–1779.
- B. Jung, R. Sivasubramanian, B. Batchelor, A.A. Wahab, Chlorate
reduction by dithionite/UV advanced reduction process, Int. J.
Environ. Sci. Technol., 14 (2017) 123–134.
- E.W. Rice, R.B. Baird, A.D. Eaton, 4500-Cl Chlorine (Residual),
Standard Methods for the Examination of Water and
Wastewater, 2018, pp. 1–35.
- Y. Zuo, J. Zhan, T. Wu, Effects of monochromatic UV-visible
light and sunlight on Fe(III)-catalyzed oxidation of dissolved
sulfur dioxide, J. Atmos. Chem., 50 (2005) 195–210.
- Y. Zuo, J. Zhan, Effects of oxalate on Fe-catalyzed photooxidation
of dissolved sulfur dioxide in atmospheric water, Atmos.
Environ., 39 (2005) 27–37.
- A. Yazdanbakhsh, A. Eslami, G. Moussavi, M. Rafiee,
A. Sheikhmohammadi, Photo-assisted degradation of
2,4,6-trichlorophenol by an advanced reduction process based
on sulfite anion radical: degradation, dechlorination and
mineralization, Chemosphere, 191 (2018) 156–165.
- Y. Gu, W. Dong, C. Luo, T. Liu, Efficient reductive decomposition
of perfluorooctanesulfonate in a high photon flux UV/sulfite
system, Environ. Sci. Technol., 50 (2016) 10554–10561.
- Y. Gu, T. Liu, Q. Zhang, W. Dong, Efficient decomposition
of perfluorooctanoic acid by a high photon flux UV/sulfite
process: kinetics and associated toxicity, Chem. Eng. J.,
326 (2017) 1125–1133.
- P. Neta, R.E. Huie, Free-radical chemistry of sulfite, Environ.
Health Perspect., 64 (1985) 209–217.
- J.C. Danilewicz, Reaction of oxygen and sulfite in wine, Am. J.
Enol. Vitic., 67 (2016) 13–17.
- B. Xie, X. Li, X. Huang, Z. Xu, W. Zhang, B. Pan, Enhanced
debromination of 4-bromophenol by the UV/sulfite process:
efficiency and mechanism, J. Environ. Sci. (China), 54 (2017)
231–238.
- K. Yu, X. Li, L. Chen, J. Fang, H. Chen, Q. Li, N. Chi, J. Ma,
Mechanism and efficiency of contaminant reduction by
hydrated electron in the sulfite/iodide/UV process, Water Res.,
129 (2018) 357–364.
- X. Li, J. Fang, G. Liu, S. Zhang, B. Pan, J. Ma, Kinetics and
efficiency of the hydrated electron-induced dehalogenation by
the sulfite/UV process, Water Res., 62 (2014) 220–228.
- L. Wang, X. Liu, Fast degradation of monochloroacetic acid by
bioi-enhanced UV/S(IV) process: efficiency and mechanism,
Catalysts, 9 (2019) 460–473.
- B. Xie, C. Shan, Z. Xu, X. Li, X. Zhang, J. Chen, B. Pan, Onestep
removal of Cr(VI) at alkaline pH by UV/sulfite process:
reduction to Cr(III) and in situ Cr(III) precipitation, Chem. Eng.
J., 308 (2017) 791–797.
- B. Jiang, Y. Liu, J. Zheng, M. Tan, Z. Wang, M. Wu, Synergetic
transformations of multiple pollutants driven by Cr(VI)-sulfite
reactions, Environ. Sci. Technol., 49 (2015) 12363–12371
- X. Li, J. Ma, G. Liu, J. Fang, S. Yue, Y. Guan, L. Chen, X. Liu,
Efficient reductive dechlorination of monochloroacetic acid by
sulfite/UV process, Environ. Sci. Technol., 46 (2012) 7342–7349.
- H. Herrmann, On the photolysis of simple anions and neutral
molecules as sources of O–/OH, SOx- and Cl in aqueous
solution, Phys. Chem. Chem. Phys., 9 (2007) 3935–3964.
- C. Brandt, I. Fábián, R.V. Eldik, Kinetics and mechanism of the
iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous
solution. Evidence for the redox cycling of iron in the presence
of oxygen and modeling of the overall reaction mechanism,
Inorg. Chem., 33 (1994) 687–701.
- C. Brandt, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution.
The influence of pH, medium and aging, Transit. Met. Chem.,
23 (1998) 667–675.
- J. Kraft, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution.
2. Decomposition of transient iron(III)-sulfur(IV) complexes,
Inorg. Chem., 28 (1989) 2306–2312.
- J. Kraft, R.V. Eldik, Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution.
1. Formation of transient iron(III)-sulfur(IV) complexes, Inorg.
Chem., 28 (1989) 2297–2305.
- K.S. Gupta, S.V. Manoj, P.K. Mudgal, Kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) in acetate buffered
medium, Transit. Met. Chem., 33 (2008) 311–316.