References
- N. Morin-Crini, G. Crini, L. Roy, Eaux industrielles contaminées,
Presses universitaires de Franche-Comté, Besançon, 2017,
p. 513.
- G. Crini, E. Lichtfouse, Advantages and disadvantages of
techniques used for wastewater treatment, Environ. Chem.
Lett., 17 (2019) 145–155.
- H. Messrouk, M. Hadj Mahammed, Y. Touil, A. Amrane,
Physico-chemical characterization of industrial effluents from
the town of Ouargla (South East Algeria), Energy Procedia.,
50 (2014) 255–262.
- E. Fosso-Kankeu, M. Reitz, F. Waanders, Selective Adsorption
of Heavy and Light Metals by Natural Zeolites, 6th Int’l Conf.
on Green Technology, Renewable Energy & Environmental
Engg. (ICGTREEE’2014) Nov. 27–28, Cape Town (SA), 2014,
pp. 271–274.
- E. Fosso-Kankeu, C. van den Heever, G. Gericke, N. Lemmer,
F. Waanders, Evaluation of the Performance of an Activated
Carbon Supplemented Sand Filter for the Reduction of COD
in Brewery Wastewater, 9th Int’l Conference on Advances
in Science, Engineering, Technology & Waste Management
(ASETWM-17) Nov. 27–28, Parys, South Africa, 2017.
- V.B. Veljković, O.S. Stamenković, M.B. Tasić, The wastewater
treatment in the biodiesel production with alkali-catalyzed
transesterification, Renewable Sustainable Energy Rev.,
32 (2014) 40–60.
- C. Zhao, H. Zheng, B. Gao, Y. Liu, J. Zhai, S. Zhang, B. Xu,
Ultrasound-initiated synthesis of cationic polyacrylamide for
oily wastewater treatment: enhanced interaction between the
flocculant and contaminants, Ultrason. Sonochem., 42 (2018)
31–41.
- E. Fosso-Kankeu, F.B. Waanders, A.F. Mulaba-Bafubiandi,
A.K. Mishra, Chapter 8 – Flocculation Performances of
Polymers and Nanomaterials for the Treatment of Industrial
Wastewaters, A.K. Mishra, Ed., Smart Materials for Waste Water
Applications, Wiley Scrivener, 2016, pp. 213–235.
- J. Ma, J. Shi, L. Ding, H. Zhang, S. Zhou, Q. Wang, X. Fu, L. Jiang,
K. Fu, Removal of emulsified oil from water using hydrophobic
modified cationic polyacrylamide flocculants synthesized from
low-pressure UV initiation, Sep. Purif. Technol., 197 (2018)
407–417.
- Z. Wang, Z. Zhang, Y. Lin, N. Deng, T. Tao, K. Zhuo, Landfill
leachate treatment by a coagulation–photooxidation process,
J. Hazard. Mater., 95 (2002) 153–159.
- D. Zawawi, N. Nazlizan, A. Halizah, Treatment of
biodiesel wastewater by coagulation and flocculation using
polyaluminum chloride, Aust. J. Basic Appl. Sci., 7 (2013)
258–262.
- H. Selcuk, Decolorization and detoxification of textile
wastewater by ozonation and coagulation processes, Dyes
Pigme., 64 (2005) 217–222.
- APHA, WEF, Standard Methods for the Examination of Water
and Wastewater, American Public Health Association, Water
Environment Federation, 2012.
- V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with
phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol.
Vitic., 16 (1965) 144–158.
- D.B. Hasan, A.R.A. Azizl, W. Daud, Oxidative mineralisation of
petroleum refinery effluent using Fenton-like process, Chem.
Eng. Res. Des., 90 (2012) 298–307.
- K. Dermentzis, D. Marmanis, A. Christoforidis, K. Ouzounis,
Electrochemical reclamation of wastewater resulted from
petroleum tanker truck cleaning, Environ. Eng. Manage. J.,
13 (2014) 2395–2399.
- H. Qachach, M. Tahiri, S. Souabi, M. Abouri, I. Chanaa,
Optimized Physico-Chemical Treatment of the Fuel Washing
Water of an Industrial Gaz-Blok with Ferric Chloride and
Polymer, Recent Advances in Environmental Science from
the Euro-Mediterranean and Surrounding Regions, Springer,
Springer International Publishing, 2017, pp. 209–210.
- M. Wagner, J.A. Nicell, Peroxidase-catalyzed removal of
phenols from a petroleum refinery wastewater, Water Sci.
Technol., 43 (2001) 253–260.
- M.H. El-Naas, S. Al-Zuhair, A. Al-Lobaney, Treatment
of petroleum refinery wastewater by continuous
electrocoagulation, Int. J. Eng. Res. Technol., 2 (2013) 2144–2150.
- Y. Zeng, C. Yang, J. Zhang, W. Pu, Feasibility investigation of
oily wastewater treatment by combination of zinc and PAM in
coagulation/flocculation, J. Hazard. Mater., 147 (2007) 991–996.
- O. Abdelwahab, N.K. Amin, E.S.Z. El-Ashtoukhy, Electrochemical
removal of phenol from oil refinery wastewater,
J. Hazard. Mater., 163 (2009) 711–716.
- B.H. Gursoy‐Haksevenler, I. Arslan‐Alaton, Profiling olive oil
mill wastewater by resin fractionation: effect of acid cracking,
coagulation, electrocoagulation, and Fenton’s reagent,
CLEAN–Soil Air Water, 42 (2014) 1384–1392.
- A. El-Abbassi, H. Kiai, A. Hafidi, Phenolic profile and
antioxidant activities of olive mill wastewater, Food Chem.,
132 (2012) 406–412.
- S.J. Kulkarni, J.P. Kaware, Review on research for removal of
phenol from wastewater, Int. J. Sci. Res. Publ., 3 (2013) 1–5.
- H.K. Mandal, Influence of wastewater pH on turbidity, Int.
J. Environ. Res. Dev., 4 (2014) 105–114.
- N. Zouhri, M. El Amrani, M. Taky, M. Hafsi, A. Elmidaoui,
Effectiveness of treatment of water surface with ferric
chloride and aluminium sulphate, Rev. Catal., 2 (2015) 1–13.
- H. Altaher, E. ElQada, W. Omar, Pretreatment of wastewater
streams from petroleum/petrochemical industries using
coagulation, Adv. Chem. Eng. Sci., 1 (2011) 245, doi: 10.4236/
aces.2011.14035.
- B.R. Gonçalves, W. Borges Neto, A.E.H. Machado, A.G. Trovó,
Biodiesel wastewater treatment by coagulation–flocculation:
evaluation and optimization of operational parameters, J. Braz.
Chem. Soc., 28 (2017) 800–807.
- A. Baghvand, A.D. Zand, N. Mehrdadi, A. Karbassi, Optimizing
coagulation process for low to high turbidity waters using
aluminum and iron salts, Am. J. Environ. Sci., 6 (2010) 442–448.
- G. Samudro, S. Mangkoedihardjo, Review on BOD, COD and
BOD/COD ratio: a triangle zone for toxic, biodegradable and
stable levels, Int. J. Acad. Res., 2 (2010) 235.
- J. Fan, W. Wang, B. Zhang, Y. Guo, H.H. Ngo, W. Guo, J. Zhang,
H. Wu, Nitrogen removal in intermittently aerated vertical
flow constructed wetlands: impact of influent COD/N ratios,
Bioresour. Technol., 143 (2013) 461–466.
- Z. Daud, H. Awang, N. Nasir, M.B. Ridzuan, Z. Ahmad,
Suspended solid, color, COD and oil and grease removal from
biodiesel wastewater by coagulation and flocculation processes,
Procedia Social Behav. Sci., 195 (2015) 2407–2411.
- I.A.R. Boluarte, M. Andersen, B.K. Pramanik, C.-Y. Chang,
S. Bagshaw, L. Farago, V. Jegatheesan, L. Shu, Reuse of car
wash wastewater by chemical coagulation and membrane
bioreactor treatment processes, Int. Biodeterior. Biodegrad.,
113 (2016) 44–48.
- J. Duan, J. Gregory, Coagulation by hydrolysing metal salts,
Adv. Colloid Interface Sci., 100 (2003) 475–502.
- R. Delcolle, M.L. Gimenes, C. Fortulan, W. Moreira,
N. Martins, N. Pereira, A comparison between coagulation and
ultrafiltration processes for biodiesel wastewater treatment,
Chem. Eng. Trans., 57 (2017) 271–276.
- A. Alshameri, H. He, A.S. Dawood, J. Zhu, Simultaneous
removal of NH4
+ and PO4
3– from simulated reclaimed waters
by modified natural zeolite. Preparation, characterization and
thermodynamics, Environ. Prot. Eng., 43 (2017), doi: 10.5277/
epe170407.
- S. Ghafari, M. Hasan, M.K. Aroua, Bio-electrochemical
removal of nitrate from water and wastewater—
a review,
Bioresour. Technol., 99 (2008) 3965–3974.
- X.-P. Yang, S.-M. Wang, D.-W. Zhang, L.-X. Zhou, Isolation and
nitrogen removal characteristics of an aerobic heterotrophic
nitrifying–denitrifying bacterium, Bacillus subtilis A1, Bioresour.
Technol., 102 (2011) 854–862.
- T. Khin, A.P. Annachhatre, Novel microbial nitrogen removal
processes, Biotechnol. Adv., 22 (2004) 519–532.
- US EPA, Technical Support Document for Water Quality-Based
Toxics Control, Office of Water Enforcement and Permits,
U.S. Environmental Protection Agency, 1985.
- J. Carrera, J.A. Baeza, T. Vicent, J. Lafuente, Biological nitrogen
removal of high-strength ammonium industrial wastewater
with two-sludge system, Water Res., 37 (2003) 4211–4221.
- D. Hindarti, Z. Arifin, T. Prartono, E. Riani, H.S. Sanusi, Toxicity
of Ammonia to Benthic Amphipod Grandidierella bonnieroides:
Potential as Confounding Factor in Sediment Bioasssy,
Indones. J. Mar. Sci., 20 (2015) 215–222.
- P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced
removal of nitrate from water using surface modification of
adsorbents–a review, J. Environ. Manage., 131 (2013) 363–374.
- K. Ota, Y. Amano, M. Aikawa, M. Machida, Removal of nitrate
ions from water by activated carbons (ACs)—Influence of
surface chemistry of ACs and coexisting chloride and sulfate
ions, Appl. Surf. Sci., 276 (2013) 838–842.
- W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan,
B.S. Ali, M.S. Islam, M.A.A. Hassan, Removal of total ammonia
nitrogen (TAN), nitrate and total organic carbon (TOC) from
aquaculture wastewater using electrochemical technology:
a review, Desalination, 285 (2012) 1–13.
- A.A. Aghapour, S. Nemati, A. Mohammadi, H. Nourmoradi,
S. Karimzadeh, Nitrate removal from water using alum and
ferric chloride: a comparative study of alum and ferric chloride
efficiency, Environ. Health Eng. Manage. J., 3 (2016) 69–73.
- E. Lacasa, P. Cañizares, C. Sáez, F.J. Fernández, M.A. Rodrigo,
Removal of nitrates from groundwater by electrocoagulation,
Chem. Eng. J., 171 (2011) 1012–1017.
- N. Mojoudi, M. Soleimani, N. Mirghaffari, C. Belver, J. Bedia,
Removal of phenol and phosphate from aqueous solutions
using activated carbons prepared from oily sludge through
physical and chemical activation, Water Sci. Technol., 80 (2019)
575–586.
- S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian,
A. Najafi, E. Mofarrah, Phenol removal from industrial
wastewaters: a short review, Desal. Water Treat., 53 (2015)
2215–2234.
- G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies
for the removal of phenol from fluid streams:
a short review of
recent developments, J. Hazard. Mater., 160 (2008) 265–288.
- M. Ahmaruzzaman, Adsorption of phenolic compounds on
low-cost adsorbents: a review, Adv. Colloid Interface Sci.,
143 (2008) 48–67.
- T.A. Özbelge, Ö.H. Özbelge, S.Z. Başkaya, Removal of phenolic
compounds from rubber–textile wastewaters by physicochemical
methods, Chem. Eng. Process. Process Intensif.,
41 (2002) 719–730.
- G.G. Kurup, B. Adhikari, B. Zisu, Treatment performance and
recovery of organic components from high pH dairy wastewater
using low-cost inorganic ferric chloride precipitant, J. Water
Process Eng., 32 (2019) 100908, doi: 10.1016/j.jwpe.2019.100908.
- Q. Shi, C. Jing, X. Meng, Competing interactions of as adsorption
and Fe(III) polymerization during ferric coprecipitation
treatment, Environ. Sci. Technol., 52 (2018) 7343–7350.