References

  1. N. Morin-Crini, G. Crini, L. Roy, Eaux industrielles contaminées, Presses universitaires de Franche-Comté, Besançon, 2017, p. 513.
  2. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  3. H. Messrouk, M. Hadj Mahammed, Y. Touil, A. Amrane, Physico-chemical characterization of industrial effluents from the town of Ouargla (South East Algeria), Energy Procedia., 50 (2014) 255–262.
  4. E. Fosso-Kankeu, M. Reitz, F. Waanders, Selective Adsorption of Heavy and Light Metals by Natural Zeolites, 6th Int’l Conf. on Green Technology, Renewable Energy & Environmental Engg. (ICGTREEE’2014) Nov. 27–28, Cape Town (SA), 2014, pp. 271–274.
  5. E. Fosso-Kankeu, C. van den Heever, G. Gericke, N. Lemmer, F. Waanders, Evaluation of the Performance of an Activated Carbon Supplemented Sand Filter for the Reduction of COD in Brewery Wastewater, 9th Int’l Conference on Advances in Science, Engineering, Technology & Waste Management (ASETWM-17) Nov. 27–28, Parys, South Africa, 2017.
  6. V.B. Veljković, O.S. Stamenković, M.B. Tasić, The wastewater treatment in the biodiesel production with alkali-catalyzed transesterification, Renewable Sustainable Energy Rev., 32 (2014) 40–60.
  7. C. Zhao, H. Zheng, B. Gao, Y. Liu, J. Zhai, S. Zhang, B. Xu, Ultrasound-initiated synthesis of cationic polyacrylamide for oily wastewater treatment: enhanced interaction between the flocculant and contaminants, Ultrason. Sonochem., 42 (2018) 31–41.
  8. E. Fosso-Kankeu, F.B. Waanders, A.F. Mulaba-Bafubiandi, A.K. Mishra, Chapter 8 – Flocculation Performances of Polymers and Nanomaterials for the Treatment of Industrial Wastewaters, A.K. Mishra, Ed., Smart Materials for Waste Water Applications, Wiley Scrivener, 2016, pp. 213–235.
  9. J. Ma, J. Shi, L. Ding, H. Zhang, S. Zhou, Q. Wang, X. Fu, L. Jiang, K. Fu, Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation, Sep. Purif. Technol., 197 (2018) 407–417.
  10. Z. Wang, Z. Zhang, Y. Lin, N. Deng, T. Tao, K. Zhuo, Landfill leachate treatment by a coagulation–photooxidation process, J. Hazard. Mater., 95 (2002) 153–159.
  11. D. Zawawi, N. Nazlizan, A. Halizah, Treatment of biodiesel wastewater by coagulation and flocculation using polyaluminum chloride, Aust. J. Basic Appl. Sci., 7 (2013) 258–262.
  12. H. Selcuk, Decolorization and detoxification of textile wastewater by ozonation and coagulation processes, Dyes Pigme., 64 (2005) 217–222.
  13. APHA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Water Environment Federation, 2012.
  14. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 16 (1965) 144–158.
  15. D.B. Hasan, A.R.A. Azizl, W. Daud, Oxidative mineralisation of petroleum refinery effluent using Fenton-like process, Chem. Eng. Res. Des., 90 (2012) 298–307.
  16. K. Dermentzis, D. Marmanis, A. Christoforidis, K. Ouzounis, Electrochemical reclamation of wastewater resulted from petroleum tanker truck cleaning, Environ. Eng. Manage. J., 13 (2014) 2395–2399.
  17. H. Qachach, M. Tahiri, S. Souabi, M. Abouri, I. Chanaa, Optimized Physico-Chemical Treatment of the Fuel Washing Water of an Industrial Gaz-Blok with Ferric Chloride and Polymer, Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, Springer, Springer International Publishing, 2017, pp. 209–210.
  18. M. Wagner, J.A. Nicell, Peroxidase-catalyzed removal of phenols from a petroleum refinery wastewater, Water Sci. Technol., 43 (2001) 253–260.
  19. M.H. El-Naas, S. Al-Zuhair, A. Al-Lobaney, Treatment of petroleum refinery wastewater by continuous electrocoagulation, Int. J. Eng. Res. Technol., 2 (2013) 2144–2150.
  20. Y. Zeng, C. Yang, J. Zhang, W. Pu, Feasibility investigation of oily wastewater treatment by combination of zinc and PAM in coagulation/flocculation, J. Hazard. Mater., 147 (2007) 991–996.
  21. O. Abdelwahab, N.K. Amin, E.S.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater., 163 (2009) 711–716.
  22. B.H. Gursoy‐Haksevenler, I. Arslan‐Alaton, Profiling olive oil mill wastewater by resin fractionation: effect of acid cracking, coagulation, electrocoagulation, and Fenton’s reagent, CLEAN–Soil Air Water, 42 (2014) 1384–1392.
  23. A. El-Abbassi, H. Kiai, A. Hafidi, Phenolic profile and antioxidant activities of olive mill wastewater, Food Chem., 132 (2012) 406–412.
  24. S.J. Kulkarni, J.P. Kaware, Review on research for removal of phenol from wastewater, Int. J. Sci. Res. Publ., 3 (2013) 1–5.
  25. H.K. Mandal, Influence of wastewater pH on turbidity, Int. J. Environ. Res. Dev., 4 (2014) 105–114.
  26. N. Zouhri, M. El Amrani, M. Taky, M. Hafsi, A. Elmidaoui, Effectiveness of treatment of water surface with ferric chloride and aluminium sulphate, Rev. Catal., 2 (2015) 1–13.
  27. H. Altaher, E. ElQada, W. Omar, Pretreatment of wastewater streams from petroleum/petrochemical industries using coagulation, Adv. Chem. Eng. Sci., 1 (2011) 245, doi: 10.4236/ aces.2011.14035.
  28. B.R. Gonçalves, W. Borges Neto, A.E.H. Machado, A.G. Trovó, Biodiesel wastewater treatment by coagulation–flocculation: evaluation and optimization of operational parameters, J. Braz. Chem. Soc., 28 (2017) 800–807.
  29. A. Baghvand, A.D. Zand, N. Mehrdadi, A. Karbassi, Optimizing coagulation process for low to high turbidity waters using aluminum and iron salts, Am. J. Environ. Sci., 6 (2010) 442–448.
  30. G. Samudro, S. Mangkoedihardjo, Review on BOD, COD and BOD/COD ratio: a triangle zone for toxic, biodegradable and stable levels, Int. J. Acad. Res., 2 (2010) 235.
  31. J. Fan, W. Wang, B. Zhang, Y. Guo, H.H. Ngo, W. Guo, J. Zhang, H. Wu, Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios, Bioresour. Technol., 143 (2013) 461–466.
  32. Z. Daud, H. Awang, N. Nasir, M.B. Ridzuan, Z. Ahmad, Suspended solid, color, COD and oil and grease removal from biodiesel wastewater by coagulation and flocculation processes, Procedia Social Behav. Sci., 195 (2015) 2407–2411.
  33. I.A.R. Boluarte, M. Andersen, B.K. Pramanik, C.-Y. Chang, S. Bagshaw, L. Farago, V. Jegatheesan, L. Shu, Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes, Int. Biodeterior. Biodegrad., 113 (2016) 44–48.
  34. J. Duan, J. Gregory, Coagulation by hydrolysing metal salts, Adv. Colloid Interface Sci., 100 (2003) 475–502.
  35. R. Delcolle, M.L. Gimenes, C. Fortulan, W. Moreira, N. Martins, N. Pereira, A comparison between coagulation and ultrafiltration processes for biodiesel wastewater treatment, Chem. Eng. Trans., 57 (2017) 271–276.
  36. A. Alshameri, H. He, A.S. Dawood, J. Zhu, Simultaneous removal of NH4 + and PO4 3– from simulated reclaimed waters by modified natural zeolite. Preparation, characterization and thermodynamics, Environ. Prot. Eng., 43 (2017), doi: 10.5277/ epe170407.
  37. S. Ghafari, M. Hasan, M.K. Aroua, Bio-electrochemical removal of nitrate from water and wastewater—
    a review, Bioresour. Technol., 99 (2008) 3965–3974.
  38. X.-P. Yang, S.-M. Wang, D.-W. Zhang, L.-X. Zhou, Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, Bacillus subtilis A1, Bioresour. Technol., 102 (2011) 854–862.
  39. T. Khin, A.P. Annachhatre, Novel microbial nitrogen removal processes, Biotechnol. Adv., 22 (2004) 519–532.
  40. US EPA, Technical Support Document for Water Quality-Based Toxics Control, Office of Water Enforcement and Permits, U.S. Environmental Protection Agency, 1985.
  41. J. Carrera, J.A. Baeza, T. Vicent, J. Lafuente, Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system, Water Res., 37 (2003) 4211–4221.
  42. D. Hindarti, Z. Arifin, T. Prartono, E. Riani, H.S. Sanusi, Toxicity of Ammonia to Benthic Amphipod Grandidierella bonnieroides: Potential as Confounding Factor in Sediment Bioasssy, Indones. J. Mar. Sci., 20 (2015) 215–222.
  43. P. Loganathan, S. Vigneswaran, J. Kandasamy, Enhanced removal of nitrate from water using surface modification of adsorbents–a review, J. Environ. Manage., 131 (2013) 363–374.
  44. K. Ota, Y. Amano, M. Aikawa, M. Machida, Removal of nitrate ions from water by activated carbons (ACs)—Influence of surface chemistry of ACs and coexisting chloride and sulfate ions, Appl. Surf. Sci., 276 (2013) 838–842.
  45. W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan, B.S. Ali, M.S. Islam, M.A.A. Hassan, Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review, Desalination, 285 (2012) 1–13.
  46. A.A. Aghapour, S. Nemati, A. Mohammadi, H. Nourmoradi, S. Karimzadeh, Nitrate removal from water using alum and ferric chloride: a comparative study of alum and ferric chloride efficiency, Environ. Health Eng. Manage. J., 3 (2016) 69–73.
  47. E. Lacasa, P. Cañizares, C. Sáez, F.J. Fernández, M.A. Rodrigo, Removal of nitrates from groundwater by electrocoagulation, Chem. Eng. J., 171 (2011) 1012–1017.
  48. N. Mojoudi, M. Soleimani, N. Mirghaffari, C. Belver, J. Bedia, Removal of phenol and phosphate from aqueous solutions using activated carbons prepared from oily sludge through physical and chemical activation, Water Sci. Technol., 80 (2019) 575–586.
  49. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desal. Water Treat., 53 (2015) 2215–2234.
  50. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams:
    a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  51. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review, Adv. Colloid Interface Sci., 143 (2008) 48–67.
  52. T.A. Özbelge, Ö.H. Özbelge, S.Z. Başkaya, Removal of phenolic compounds from rubber–textile wastewaters by physicochemical methods, Chem. Eng. Process. Process Intensif., 41 (2002) 719–730.
  53. G.G. Kurup, B. Adhikari, B. Zisu, Treatment performance and recovery of organic components from high pH dairy wastewater using low-cost inorganic ferric chloride precipitant, J. Water Process Eng., 32 (2019) 100908, doi: 10.1016/j.jwpe.2019.100908.
  54. Q. Shi, C. Jing, X. Meng, Competing interactions of as adsorption and Fe(III) polymerization during ferric coprecipitation treatment, Environ. Sci. Technol., 52 (2018) 7343–7350.