References

  1. S. Tanada, M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, T. Tamura, Removal of phosphate by aluminum oxide hydroxide, J. Colloid Interface Sci., 257 (2003) 135–140.
  2. P.U.Verma, A.R. Purohit, N.J. Patel, Pollution status of Chandlodia Lake located in Ahmedabad Gujarat, Int. J. Eng. Res. Appl., 2 (2012) 1600–1610.
  3. D. Yadav, M. Kapur, P. Kumar, M. K. Mondal, Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue, Process Saf. Environ. Prot., 94 (2015) 402–409.
  4. M. Arshadi, H. Eskandarloo, M. Azizi, A. Abbaspourrad, M.K. Abdolmaleki, H. Eskandarloo, A. pourrad, Synthesis of highly monodispersed, stable, and spherical NZVI of 20−30 nm on filter paper for the removal of phosphate from wastewater: batch and column study, ACS Sustainable Chem. Eng., 6 (2018) 11662–11676.
  5. E.N. Peleka, E.A. Deliyanni, Adsorptive removal of phosphates from aqueous solutions, Desalination, 245 (2009) 357–371.
  6. L. Chen, X. Zhao, B. Pan, W. Zhang, M. Hua, L. Lv, W. Zhang, Preferable removal of phosphate from water sing hydrous zirconium oxide-based nanocomposite of high stability, J. Hazard. Mater., 284 (2015) 35–42.
  7. S. Yeoman, T. Stephenson, J.N. Lester, R. Perry, The removal of phosphorus during wastewater treatment: a review, Environ. Pollut., 49 (1998) 183–233.
  8. A.N. Shilton, I. Elmetri, A. Drizo, S. Pratt, R.G. Haverkamp, S.C. Bilby, Phosphorus removal by an “active” slag filter - a decade of full scale experience, Water Res., 40 (2006) 113–118.
  9. Y. Zhang, R. Gao, M. Liu, C. Yan, A. Shan, Adsorption of modified halloysite nanotubes in vitro and the protective effect in rats exposed to zearalenone, Arch. Anim. Nutr., 68 (2014) 320–335.
  10. A. Bhatnagar, M. Sillanpää, A review of emerging adsorbents for nitrate removal from water, Chem. Eng. J., 168 (2011) 493–504.
  11. F.J. Zhang, H.Y. Zhang, L.Y. Zhang, The removal of phosphate by coal Gangue from wastewater, Appl. Mech. Mater., 209 (2012) 2005–2008.
  12. Y. Yao, B. Gao, M. Inyang, Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential, Bioresour. Technol., 102 (2011) 6273–6278.
  13. F. Faraoun, M.A. Bouzidi, I. Attaoui, A. Latreche, H. Meliani, M. Benyahia, Caractérisation des formations végétales à Ampelodesmos mauritanicus sur Djebel Tessala, Algérie occidentale, Afrique Science, 12 (2016) 326–335.
  14. H. Zerganea, S. Abdia, H. Xub, J. Hemming, X. Wang, S. Willför, Y. Habibid, Ampelodesmos mauritanicus a new sustainable source for nanocellulose substrates, Ind. Crops Prod., 144 (2020) 112044, doi: 10.1016/j.indcrop.2019.112044.
  15. F. Luzia, D. Pugliaa, F. Sarasinib, J. Tirillòb, G. Maffeib, A. Zuorrob, R. Lavecchiab, J.M. Kennya, L. Torrea, Valorization and extraction of cellulose nanocrystals from North African Grass: Ampelodesmos mauritanicus (Diss.), Carbohydr. Polym., 209 (2019) 328–337.
  16. M.E.H. Bourahli, H. Osmani, Chemical and mechanical properties of diss (Ampelodesmos mauritanicus) fibers,
    J. Nat. Fibers, 10 (2013) 219–232.
  17. L. Yu, Y.M. Luo, Fabrication, characterization and evaluation of mesoporous activated carbons from an agricultural waste: Jerusalem artichoke stalk as an example, Front. Environ. Sci. Eng., 9 (2013) 206–215.
  18. S. Toshiguki, K. Yukata, Pyrolysis of plant, animal and human wastes; physical and chemical characterization of the pyrolytic product, Bioresour. Technol., 90 (2003) 241–247.
  19. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1362–1403.
  20. ASTM, Standard Test Method for Total Ash Content of Activated Carbon (ASTM-D2866-94), American Society for Testing and Materials, Philadelphia, 1995.
  21. B. Bestani, N. Benderdouche, B. Bensttali, B. Mostefa, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
  22. M. Rafatullah, O. Sulaiman, R. Hachim, A. Ahmed, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  23. I. EL Aboudia, H. Annaba, A. Mdarhria, M. Amjouda, L. Servantc, Activated carbon synthesis using Moroccan dates stones as precursor and application for wastewater treatment, J. Mater. Environ. Sci., 8 (2017) 1483–1481.
  24. M.A. Nahil, P.T. Wiliams, Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks, Biomass Bioenergy, 37 (2012) 142–149.
  25. J. Guo, A.C. Lua, Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation, Mater. Chem. Phys., 80 (2003) 114–119.
  26. B. Hong, G. Xue, L. Weng, X. Guo, Pretreatment of moso bamboo with dilute phosphoric acid, BioResources, 7 (2012) 4902–4913.
  27. S.S. Thanapal, W. Chen, K. Annamalai, N. Carlin, R.J. Ansley, D. Ranjan, Carbon dioxide torrefaction of woody biomass, Energy Fuels, 28 (2014) 1147–1157.
  28. W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon, J. Anal. Appl. Pyrolysis, 88 (2010) 181–186.
  29. H. Liu, J. Zhang, C. Zhang, N. Bao, C. Cheng, Activated carbons with well-developed microporosity and high surface acidity prepared from lotus stalks by organophosphorus compounds activations, Carbon, 60 (2013) 289–291.
  30. M. Jagtoyen, F. Derbyshire, Activated carbons from yellow poplar and white oak by H3PO4 activation, Carbon, 36 (1998) 1085–1094.
  31. K. Schrodter, G. Bettermann, T. Staffel, T. Hofman, Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A19, VCH, Weinheim, 1991.
  32. M.S. Shamsuddina, N.R.N. Yusoffa, M.A. Sulaimana, Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation, Procedia Chem., 19 (2016) 558–565.
  33. P. Barpanda, G. Fanchini, G.G. Amatucci, Structure, surface morphology and electrochemical properties of brominated activated carbons, Carbon, 49 (2011) 2538–2548.
  34. J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, G. Xing, Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4 Jianzhong, Appl. Surf. Sci., 320 (2014) 674–680.
  35. A.A. Babar, I. Panhwar, S. Qureshi, S. Memon, Z. Siddiqui, Utilization of biomass rice straw to produce activated charcoal through single stage pyrolysis process, J. Int. Environ., 14 (2019) 1–6.
  36. V.G. Serrano, J.P. Villegas, A.P. Florindo, C.D. Valle, C.V. Calahorro, FT-IR study of rockrose and of char and activated carbon, J. Anal. Appl. Pyrolysis, 36 (1996) 71–80.
  37. M.A. Montes-Moran, D. Suarez, J.A. Menendez, E. Fuente, On the nature of basic sites on carbon surfaces: an overview, Carbon, 42 (2004) 1219–1225.
  38. J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Modefication of the surface chemistry of activated carbones, Carbon, 37 (1999) 1379–1389.
  39. J. Zou, Y. Dai, X. Wang, Z. Ren, C. Tian, K. Pan, S. Li, M. Abuobeidah, H. Fu, Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity, Bioresour. Technol., 142 (2013) 209–217.
  40. J.B. Xiong, Q. Mahmood, Adsorptive removal of phosphate from aqueous media by peat, Desalination, 259 (2010) 59–64.
  41. X. Song, Y. Pan, Q. Wu, Z. Cheng, W. Ma, Phosphate removal from aqueous solutions by adsorption using ferric sludge, Desalination, 280 (2011) 384–390.
  42. P. Kumar, S. Sudha, S. Chand, V.C. Srivastava, Phosphate removal from aqueous solution using coir-pith activated carbon, Sep. Sci. Technol., 45 (2018) 1–8.
  43. D.T. Mekonnen, E. Alemayehu, B. Lennartz, Removal of phosphate ions from aqueous solutions by adsorption onto leftover coal, Water, 12 (2020) 1381, doi: 10.3390/w12051381.
  44. N. Mehrabi, M. Soleimani, H. Sharififard, M.M. Yeganeh, Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM), Desal. Water Treat., 57 (2015) 15613–15618.
  45. A. Robald, L. Dreijalte, O. Bikovens, M. Klavins, A novel peat-based biosorbent for the removal of phosphate from synthetic and real wastewater and possible utilization of spent sorbent in land application, Desal. Water Treat., 57 (2016) 13285–13294.
  46. Z.X. Liu, J. Jiang, S. Fu, F.C. Zhejiang, Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution, Appl. Surf. Sci., 387 (2016) 419–430.
  47. C.W. Cheung, J.F. Porter, G. McKay, Sorption kinetics for the removal of copper and zinc from effluents using bone char, Sep. Purif. Technol., 19 (2000) 55–64.
  48. M.A. Hanif, R. Naziya, M.N. Zafar, K. Akhtar, H.N. Bhatti, Kinetic studies for Ni(II) biosorption from industrial wastewater by Cassia fistula (Golden Shower) biomass, J. Hazard. Mater., 145 (2007) 501–505.
  49. M.C. Ncibi, Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis, J. Hazard. Mater., 153 (2008) 207–212.
  50. M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar, C. Duran, Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon, Chem. Eng. J., 187 (2012) 133–141.
  51. W. Huang, S. Wang, Z. Zhu, L. Li, X. Yao, V. Rudolph, F. Haghseresht, Phosphate removal from wastewater using red mud, J. Hazard. Mater., 158 (2008) 35–42.
  52. L.G. Yan, Y.Y. Xu, H.Q. Yu, X.D. Xin, Q. Wei, B. Du, Adsorption of phosphate from aqueous solution
    by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites, J. Hazard. Mater.,
    179 (2010) 244–250.
  53. D. Wu, B. Zhang, C. Li, Z. Zhang, H. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment, J. Colloid Interface Sci., 304 (2006) 300–306.
  54. J. Xiong, Z. He, Q. Mahmood, D. Liu, Phosphate removal from solution using steel, slag through magnetic separation, J. Hazard. Mater., 152 (2008) 211–215.
  55. J. Chen, H. Kong, D. Wu, X. Chen, D. Zhang, Z. Sun, Phosphate immobilization from aqueous solution by fly ashes in relation to their composition, J. Hazard. Mater., 139 (2007) 293–300.
  56. L. Zeng, X. Li, J. Liu, Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings, Water Res., 38 (2004) 1318–1326.
  57. D. Xu, J. Xu, J. Wu, A. Muhammad, Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems, Chemosphere, 63 (2006) 344–352.
  58. N. Bellier, F. Chazarenc, Y. Comeau, Phosphorus removal from wastewater by mineral apatite, Water Res., 40 (2006) 2965–2971.
  59. O.K. Borggaard, B. Raben-Lange, A.L. Gimsing, B.W. Strobel, Influence of humic substances on phosphate adsorption by aluminium and iron oxides, Geoderma, 127 (2005) 270–279.
  60. T.W. Weber, R.K. Chakraborti, Pore and solid diffusion models for fixed bed adsorbents, AIChE J., 20 (1974) 228–238.