References
- L. Zhong, J.J. Brancho, S. Batterman, B.M. Bartlett, C. Godwin,
Experimental and modeling study of visible light responsive
photocatalytic oxidation (PCO) materials for toluene
degradation, Appl. Catal., B, 216 (2017) 122–132.
- W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and
photocatalytic degradation of volatile organic compounds
(VOCs) using carbon-based nanocomposites: a critical review,
Chemosphere, 218 (2019) 845–859.
- R. Xie, J. Ji, K. Guo, D. Lei, Q. Fan, D.Y. Leung, H. Huang, Wet
scrubber coupled with UV/PMS process for efficient removal
of gaseous VOCs: roles of sulfate and hydroxyl radicals, Chem.
Eng. J., 356 (2019) 632–640.
- Y. Shu, Y. Xu, H. Huang, J. Ji, S. Liang, M. Wu, D.Y. Leung,
Catalytic oxidation of VOCs over Mn/TiO2/activated carbon
under 185 nm VUV irradiation, Chemosphere, 208 (2018)
550–558.
- A.C. Rai, P. Kumar, F. Pilla, A.N. Skouloudis, S. Di Sabatino,
C. Ratti, D. Rickerby, End-user perspective of low-cost sensors
for outdoor air pollution monitoring, Sci. Total Environ.,
607 (2017) 691–705.
- F.I. Khan, A.K. Ghoshal, Removal of volatile organic
compounds from polluted air, J. Loss Prev. Process Ind.,
13 (2000) 527–545.
- L. Zhong, F. Haghighat, P. Blondeau, J. Kozinski, Modeling
and physical interpretation of photocatalytic oxidation
efficiency in indoor air applications, Build. Environ., 45 (2010)
2689–2697.
- L. Lin, Y. Chai, B. Zhao, W. Wei, D. He, B. He, Q. Tang,
Photocatalytic oxidation for degradation of VOCs, Open
J. Inorg. Chem., 3 (2013) 14–25.
- H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia,
M.H. Isa, Photocatalytic oxidation of organic dyes and
pollutants in wastewater using different modified titanium
dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015)
1–36.
- A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis:
recent advances and applications, J. Catal., 3 (2013) 189–218.
- Y. Zhang, T. Mori, L. Niu, J. Ye, Non-covalent doping of
graphitic carbon nitride polymer with graphene: controlled
electronic structure and enhanced optoelectronic conversion,
Energy Environ. Sci., 4 (2011) 4517–4521.
- L. Kong, J. Wang, F. Ma, M. Sun, J. Quan, Graphitic carbon
nitride nanostructures: catalysis, Appl. Mater. Today, 16 (2019)
388–424.
- M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, Direct
Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly
efficient ceftiofur sodium photodegradation, J. Mater. Sci.
Technol., 56 (2020) 133–142.
- B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, H. Feng,
Nitrogen-doped hollow mesoporous carbon spheres modified
g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system
with enhanced antibiotics degradation under visible light,
ACS Sustainable Chem. Eng., 6 (2018) 16424–16436.
- N.T.T. Truc, D.S. Duc, D. Van Thuan, T. Al Tahtamouni,
T.D. Pham, N.T. Hanh, N.T.P. Le Chi, The advanced
photocatalytic degradation of atrazine by direct Z-scheme Cu
doped ZnO/g-C3N4, Appl. Surf. Sci., 489 (2019) 875–882.
- N.T.T. Truc, T.D. Pham, D. Van Thuan, D.T. Tran, M.V. Nguyen,
N.M. Dang, H.T. Trang, Superior activity of Cu-NiWO4/g-C3N4
Z direct system for photocatalytic decomposition of VOCs in
aerosol under visible light, J. Alloys Compd., 798 (2019) 12–18.
- X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen,
Y. Hou, M. Antonietti, Polymer semiconductors for artificial
photosynthesis: hydrogen evolution by mesoporous graphitic
carbon nitride with visible light, J. Am. Chem. Soc., 131 (2009)
1680–1681.
- J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based
photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
- X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon
nitride for heterogeneous photocatalysis, ACS Catal., 2 (2012)
1596–1606.
- D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides,
Science, 271 (1996) 53–55.
- B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation
study of tri-s-triazine-based g-C3N4: a review, Appl. Catal., B,
224 (2018) 983–999.
- Y. Xu, S.P. Gao, Bandgap of C3N4 in the GW approximation, Int.
J. Hydrogen Energy, 37 (2012) 11072–11080.
- D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metalfree
photocatalyst systems: a review, Appl. Catal., B, 206 (2017)
556–588.
- J. Fu, J. Yu, C. Jiang, B. Cheng, g‐C3N4‐Based heterostructured
photocatalysts, Adv. Energy Mater., 8 (2018) 1701503,
doi: 10.1002/aenm.201701503.
- D. Liang, T. Jing, Y. Ma, J. Hao, G. Sun, M. Deng, Photocatalytic
properties of g-C6N6/g-C3N4 heterostructure: a theoretical study,
J. Phys. Chem. C, 120 (2016) 24023–24029.
- Y. Ren, D. Zeng, W.J. Ong, Interfacial engineering of graphitic
carbon nitride (g-C3N4)-based metal sulfide heterojunction
photocatalysts for energy conversion: a review, Chin. J. Catal.,
40 (2019) 289–319.
- C.M. Soukoulis, Ed., Photonic Bandgap Materials, Vol. 315,
Springer Science & Business Media, Iowa, 2012.
- J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi,
Heterojunction photocatalysts, Adv. Mater., 29 (2017) 1601694,
doi: 10.1002/adma.201601694.
- L.V. Bora, R. K, Mewada, Visible/solar light active photocatalysts
for organic effluent treatment: fundamentals, mechanisms
and parametric review, Renewable Sustainable Energy Rev.,
76 (2017) 1393–1421.
- H. Katsumata, Y. Tachi, T. Suzuki, S. Kaneco, Z-scheme
photocatalytic hydrogen production over WO3/g-C3N4
composite photocatalysts, RSC Adv., 4 (2014) 21405–21409.
- W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic
carbon nitride (g-C3N4)-based photocatalysts for artificial
photosynthesis and environmental remediation: are we a step
closer to achieving sustainability?, Chem. Rev., 116 (2016)
7159–7329.
- A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim,
P. Singh, Review on fabrication of graphitic carbon nitride based
efficient nanocomposites for photodegradation of aqueous
phase organic pollutants, J. Ind. Eng. Chem., 67 (2018) 28–51.
- H. Li, Z. Zhang, Y. Liu, W. Cen, X. Luo, Functional group effects
on the HOMO–LUMO gap of g-C3N4, Nanomaterials, 8 (2018)
589, doi: 10.3390/nano8080589.
- Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao,
Hydrogen evolution by a metal-free electrocatalyst, Nat.
Commun., 5 (2014) 1–8.
- Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based
nanocomposites: a review, Nanoscale, 7 (2015) 15–37.
- T.T. Pham, E.W. Shin, Influence of g-C3N4 precursors in
g-C3N4/NiTiO3 composites on photocatalytic behavior and
the interconnection between g-C3N4 and NiTiO3, Langmuir,
34 (2018) 13144–13154.
- L. Tang, C. Feng, Y. Deng, G. Zeng, J. Wang, Y. Liu, J. Wang,
Enhanced photocatalytic activity of ternary
Ag/g-C3N4/NaTaO3
photocatalysts under wide spectrum light radiation: the
high potential band protection mechanism, Appl. Catal., B,
230 (2018) 102–114.
- Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao, C. Xue, Temperaturecontrolled
morphology evolution of graphitic carbon nitride
nanostructures and their photocatalytic activities under visible
light, RSC Adv., 5 (2015) 49317–49325.
- Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, H. Li, Synthesis
of g-C3N4 at different temperatures for superior visible/UV
photocatalytic performance and photoelectrochemical sensing
of MB solution, RSC Adv., 5 (2015) 101552–101562.
- H. Yan, Y. Chen, S. Xu, Synthesis of graphitic carbon nitride by
directly heating sulfuric acid treated melamine for enhanced
photocatalytic H2 production from water under visible light,
Int. J. Hydrogen Energy, 37 (2012) 125–133.
- W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang,
Enhanced visible-light-driven photocatalytic removal of NO:
effect on layer distortion on g-C3N4 by H2 heating, Appl. Catal.,
B, 179 (2015) 106–112.
- J. Chen, Z. Hong, Y. Chen, B. Lin, B. Gao, One-step synthesis
of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for
enhanced hydrogen evolution under visible light, Mater. Lett.,
145 (2015) 129–132.
- G. Wu, S.S. Thind, J. Wen, K. Yan, A. Chen, A novel nanoporous
α-C3N4 photocatalyst with superior high visible light activity,
Appl. Catal., B, 142 (2013) 590–597.
- Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon
nitride synthesized via direct polymerization of urea for
efficient sunlight-driven photocatalytic hydrogen production,
Nanoscale, 4 (2012) 5300–5303.
- J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple
pyrolysis of urea into graphitic carbon nitride with recyclable
adsorption and photocatalytic activity, J. Mater. Chem.,
21 (2011) 14398–14401.
- F. Dong, Z. Wang, Y. Sun, W.K. Ho, H. Zhang, Engineering
the nanoarchitecture and texture of polymeric carbon nitride
semiconductor for enhanced visible light photocatalytic activity,
J. Colloid Interface Sci., 401 (2013) 70–79.
- P. Yang, J. Zhao, W. Qiao, L. Li, Z. Zhu, Ammonia-induced
robust photocatalytic hydrogen evolution of graphitic carbon
nitride, Nanoscale, 7 (2015) 18887–18890.
- D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen,
Z. Guo, J. Tang, Highly efficient photocatalytic H2 evolution
from water using visible light and structure‐controlled graphitic
carbon nitride, Angew. Chem. Int. Ed., 53 (2014) 9240–9245.
- G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of
thiourea into carbon nitride semiconductors as visible light
photocatalysts, J. Mater. Chem., 22 (2012) 8083–8091.
- Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Metalfree
activation of H2O2 by g-C3N4 under visible light irradiation
for the degradation of organic pollutants, Phys. Chem. Chem.
Phys., 14 (2012) 1455–1462.
- Y. Fang, X. Li, X. Wang, Synthesis of polymeric carbon nitride
films with adhesive interfaces for solar water splitting devices,
ACS Catal., 8 (2018) 8774–8780.
- Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti,
X. Wang, Synthesis of bulk and nanoporous carbon nitride
polymers from ammonium thiocyanate for photocatalytic
hydrogen evolution, J. Mater. Chem., 21 (2011) 13032–13039.
- L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Polycondensation
of guanidine hydrochloride into a graphitic carbon nitride
semiconductor with a large surface area as a visible light
photocatalyst, Catal. Sci. Technol., 4 (2014) 3235–3243.
- B. Long, J. Lin, X. Wang, Thermally-induced desulfurization
and conversion of guanidine thiocyanate into graphitic carbon
nitride catalysts for hydrogen photosynthesis, J. Mater. Chem.
A, 2 (2014) 2942–2951.
- Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, Highly selective
hydrogenation of phenol and derivatives over a Pd@carbon
nitride catalyst in aqueous media, J. Am. Chem. Soc., 133 (2011)
2362–2365.
- J. Liu, H. Wang, M. Antonietti, Graphitic carbon nitride
“reloaded”: emerging applications beyond (photo) catalysis,
Chem. Soc. Rev., 45 (2016) 2308–2326.
- Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme
Ag3PO4/g-C3N4 composite in converting CO2 to fuel, Environ.
Sci. Technol., 49 (2015) 649–656.
- Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride
polymers toward sustainable photoredox catalysis, Angew.
Chem. Int. Ed., 54 (2015) 12868–12884.
- J. Hong, D.K. Hwang, R. Selvaraj, Y. Kim, Facile synthesis of
Br-doped g-C3N4 nanosheets via one-step exfoliation using
ammonium bromide for photodegradation of oxytetracycline
antibiotics, J. Ind. Eng. Chem., 79 (2019) 473–481.
- X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Zn-vacancy
mediated electron-hole separation in ZnS/g-C3N4 heterojunction
for efficient visible-light photocatalytic hydrogen production,
Appl. Catal., B, 229 (2018) 41–51.
- L. Yao, D. Wei, Y. Ni, D. Yan, C. Hu, Surface localization of
CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons:
highly efficient visible light-induced H2-generation, Nano
Energy, 26 (2016) 248–256.
- L. Zhang, Q. Liu, Y. Chai, W.L. Dai, Facile construction
of phosphate incorporated graphitic carbon nitride with
mesoporous structure and superior performance for H2
production, Int. J. Hydrogen Energy, 43 (2018) 5591–5602.
- T. Montalvo‐Herrera, D. Sánchez‐Martínez, D.B. Hernandez‐Uresti, E. Zarazua‐Morin, Facile preparation of KBiO3/g‐C3N4
composites with microwave irradiation for photocatalytic
hydrogen production, J. Chem. Technol. Biotechnol., 94 (2019)
3440–3446.
- A. Akhundi, A. Habibi-Yangjeh, Novel g-C3N4/Ag2SO4
nanocomposites: fast microwave-assisted preparation and
enhanced photocatalytic performance towards degradation of
organic pollutants under visible light, J. Colloid Interface Sci.,
482 (2016) 165–174.
- Z. Zhang, X. Li, H. Chen, G. Shao, R. Zhang, H. Lu, Synthesis and
properties of Ag/ZnO/g-C3N4 ternary micro/nanocomposites
by microwave-assisted method, Mater. Res. Express, 5 (2018)
015021.
- X.J. Wang, W.Y. Yang, F.T. Li, Y.B. Xue, R.H. Liu, Y.J. Hao, In
situ microwave-assisted synthesis of porous N-TiO2/g-C3N4
heterojunctions with enhanced visible-light photocatalytic
properties, Ind. Eng. Chem. Res., 52 (2013) 17140–17150.
- R.I. Walton, Subcritical solvothermal synthesis of condensed
inorganic materials, Chem. Soc. Rev., 31 (2002) 230–238.
- M. Li, L. Zhang, X. Fan, M. Wu, Y. Du, M. Wang, J. Shi, Dual
synergetic effects in MoS2/pyridine-modified g-C3N4 composite
for highly active and stable photocatalytic hydrogen evolution
under visible light, Appl. Catal., B, 190 (2016) 36–43.
- W. Chen, T.Y. Liu, T. Huang, X.H. Liu, G.R. Duan, X.J. Yang,
S.M. Chen, A novel yet simple strategy to fabricate visible light
responsive C, N-TiO2/g-C3N4 heterostructures with significantly
enhanced photocatalytic hydrogen generation, RSC Adv.,
5 (2015) 101214–101220.
- Z. Jiang, C. Zhu, W. Wan, K. Qian, J. Xie, Constructing
graphite-like carbon nitride modified hierarchical yolk–shell
TiO2 spheres for water pollution treatment and hydrogen
production, J. Mater. Chem. A, 4 (2016) 1806–1818.
- Q.Z. Huang, J.C. Wang, P.P. Wang, H.C. Yao, Z.J. Li, In-situ
growth of mesoporous Nb2O5 microspheres on g-C3N4
nanosheets for enhanced photocatalytic H2 evolution under
visible light irradiation, Int. J. Hydrogen Energy, 42 (2017)
6683–6694.
- F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, X. Hu,
Fabrication, characterization, and photocatalytic performance
of exfoliated g-C3N4–TiO2 hybrids, Appl. Surf. Sci., 311 (2014)
574–581.
- C. Li, Z. Sun, Y. Xue, G. Yao, S. Zheng, A facile synthesis of
g-C3N4/TiO2 hybrid photocatalysts by sol–gel method and its
enhanced photodegradation towards methylene blue under
visible light, Adv. Powder Technol., 27 (2016) 330–337.
- J. Li, Y. Liu, H. Li, C. Chen, Fabrication of g-C3N4/TiO2
composite photocatalyst with extended absorption wavelength
range and enhanced photocatalytic performance, J. Photochem.
Photobiol., A, 317 (2016) 151–160.
- X. Tian, Y.J. Sun, Y.J. He, X.J. Wang, J. Zhao, S.Z. Qiao, F.T. Li,
Surface P atom grafting of g-C3N4 for improved local spatial
charge separation and enhanced photocatalytic H2 production,
J. Mater. Chem. A, 7 (2019) 7628–7635.
- L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu, Y. Jie, J. Ye, A surface
modification resultant thermally oxidized porous
g-C3N4 with
enhanced photocatalytic hydrogen production, Appl. Catal., B,
204 (2017) 335–345.
- G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.M. Cheng,
Unique electronic structure induced high photoreactivity of
sulfur-doped graphitic C3N4, J. Am. Chem. Soc., 132 (2010)
11642–11648.
- H. Wang, C. Yang, M. Li, F. Chen, Y. Cui, Enhanced photocatalytic
hydrogen production of restructured B/F codoped g-C3N4 via
post-thermal treatment, Mater. Lett., 212 (2018) 319–322.
- M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov,
J.R. García, L. Palmisano, Selective photocatalytic oxidation
of aromatic alcohols in water by using P-doped g-C3N4, Appl.
Catal., B, 220 (2018) 222–233.
- Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, C. Xue, Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities
for solar fuels production, Appl. Catal., B, 140 (2013) 164–168.
- W. Lin, Y. Cao, P. Wang, M. Sun, Unified treatment for plasmon–exciton co-driven reduction and oxidation reactions, Langmuir,
33 (2017) 12102–12107.
- X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R.S. Ruoff, Largearea
synthesis of high-quality and uniform graphene films on
copper foils, Science, 324 (2009) 1312–1314.
- J. Liu, H. Wang, Z.P. Chen, H. Moehwald, S. Fiechter, R. van
de Krol, M. Antonietti, Microcontact‐printing‐assisted access of
graphitic carbon nitride films with favorable textures toward
photoelectrochemical application, Adv. Mater., 27 (2015)
712–718.
- S. Zhang, N.T. Hang, Z. Zhang, H. Yue, W. Yang, Preparation
of g-C3N4/graphene composite for detecting NO2 at room
temperature, Nanomaterials, 7 (2017) 12, doi: 10.3390/
nano7010012.
- Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu,
Graphitic carbon nitride nanoribbons: graphene‐assisted
formation and synergic function for highly efficient hydrogen
evolution, Angew. Chem. Int. Ed., 53 (2014) 13934–13939.
- Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Facile
synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high‐performance, flexible,
all‐solid‐state asymmetric supercapacitors, Adv. Energy Mater.,
4 (2014) 1400064, doi: 10.1002/aenm.201400064.
- H. Huang, S. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Pt‐decorated
3D architectures built from graphene and graphitic carbon
nitride nanosheets as efficient methanol oxidation catalysts,
Adv. Mater., 26 (2014) 5160–5165.
- J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Porous C3N4
nanolayers@N-graphene films as catalyst electrodes for highly
efficient hydrogen evolution, ACS Nano., 9 (2015) 931–940.
- Y. Shi, L. Fu, X. Chen, J. Guo, F. Yang, J. Wang, Y. Hu,
Hypophosphite/graphitic carbon nitride hybrids: preparation
and flame-retardant application in thermoplastic polyurethane,
Nanomaterials, 7 (2017) 259, doi: 10.3390/nano7090259.
- D. Xiao, K. Dai, Y. Qu, Y. Yin, H. Chen, Hydrothermal synthesis
of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic
reduction of Cr(VI) under visible light, Appl. Surf. Sci.,
358 (2015) 181–187.
- N.M. Deraz, The comparative jurisprudence of catalysts
preparation methods: I. Precipitation and impregnation
methods, J. Ind. Environ. Chem., 2 (2018) 19–21.
- S. Samanta, S. Martha, K. Parida, Facile synthesis of Au/g‐C3N4 nanocomposites: an inorganic/organic hybrid plasmonic
photocatalyst with enhanced hydrogen gas evolution under
visible‐light irradiation, ChemCatChem, 6 (2014) 1453–1462.
- N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, G. Lu, Novel PtPd
alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced
photocatalytic activity for H2 evolution under visible light
irradiation, Chin. J. Catal., 40 (2019) 352–361.
- N. Xiao, Y. Li, S. Li, X. Li, Y. Gao, L. Ge, G. Lu, In-situ synthesis
of PdAg/g-C3N4 composite photocatalyst for highly efficient
photocatalytic H2 generation under visible light irradiation, Int.
J. Hydrogen Energy, 44 (2019) 19929–19941.
- A.E.A. Bakr, W.M. El Rouby, M.D. Khan, A.A. Farghali,
B. Xulu, N. Revaprasadu, Synthesis and characterization of
Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced
photoelectrochemical water oxidation, Sol. Energy, 193 (2019)
403–412.
- Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong,
A hierarchical Z-scheme α‐Fe2O3/g‐C3N4 hybrid for enhanced
photocatalytic CO2 reduction, Adv. Mater., 30 (2018) 1706108,
doi: 10.1002/adma.201706108.
- L. Xu, J. Xia, H. Xu, S. Yin, K. Wang, L. Huang, H. Li, Reactable ionic
liquid assisted solvothermal synthesis of graphite-like C3N4
hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive
performance,
J. Power Sources, 245 (2014) 866–874.
- H. Guo, M. Chen, Q. Zhong, Y. Wang, W. Ma, J. Ding, Synthesis
of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visiblelight
photocatalytic reduction of CO2 to CH3OH, J. CO2 Util.,
33 (2019) 233–241.
- X.-N. Wei, H.-L. Wang, X.-K. Wang, W.-F. Jiang, Facile
fabrication of mesoporous g-C3N4/TiO2 photocatalyst for
efficient degradation of DNBP under visible light irradiation,
Appl. Surf. Sci., 426 (2017) 1271–1280.
- Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, One-step
synthesis of nanostructured g-C3N4/TiO2 composite for highly
enhanced visible-light photocatalytic H2 evolution, Appl.
Catal., B, 230 (2018) 260–268.
- R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free
preparation of macro/mesoporous g-C3N4/TiO2 heterojunction
photocatalysts with enhanced visible light photocatalytic
activity, Appl. Catal., B, 187 (2016) 47–58.
- L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Efficient visiblelight
photocatalytic hydrogen evolution and enhanced
photostability of core@shell Cu2O@g-C3N4 octahedra, Appl.
Surf. Sci., 351 (2015) 1146–1154.
- D. Li, J. Zan, L. Wu, S. Zuo, H. Xu, D. Xia, Heterojunction tuning
and catalytic efficiency of g-C3N4–Cu2O with glutamate, Ind.
Eng. Chem. Res., 58 (2019) 4000–4009.
- L. Liu, Y. Qi, J. Hu, W. An, S. Lin, Y. Liang, W. Cui, Stable
Cu2O@g-C3N4 core@shell nanostructures: efficient visiblelight
photocatalytic hydrogen evolution, Mater. Lett.,
158 (2015) 278–281.
- P.Y. Kuang, Y.Z. Su, G.F. Chen, Z. Luo, S.Y. Xing, N. Li,
Z, Q, Liu, g-C3N4 decorated ZnO nanorod arrays for enhanced
photoelectrocatalytic performance, Appl. Surf. Sci., 358 (2015)
296–303.
- J. Liu, X.T. Yan, X.S. Qin, S.J. Wu, H. Zhao, W.B. Yu, B.L.
Su, Light-assisted preparation of heterostructured
g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen
performance, Catal. Today, 355 (2019) 932–936.
- P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, D. Astruc,
Constructing mesoporous g-C3N4/ZnO nanosheets catalyst
for enhanced visible-light driven photocatalytic activity,
J. Photochem. Photobiol., A, 388 (2020) 112169, doi: 10.1016/j.jphotochem.2019.112169.
- W.K. Jo, N.C.S. Selvam, Enhanced visible light-driven
photocatalytic performance of ZnO–g-C3N4 coupled with
graphene oxide as a novel ternary nanocomposite, J. Hazard.
Mater., 299 (2015) 462–470.
- S. Balu, S. Velmurugan, S. Palanisamy, S.W. Chen, V. Velusamy,
T.C. Yang, E.S.I. El-Shafey, Synthesis of α-Fe2O3 decorated
g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation
of tartrazine dye in aqueous media, J. Taiwan Inst. Chem.
Eng., 99 (2019) 258–267.
- S. Cao, J. Yu, g-C3N4-based photocatalysts for hydrogen
generation, J. Phys. Chem. Lett., 5 (2014) 2101–2107.
- Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible
light driven type II heterostructures and their enhanced
photocatalysis properties: a review, Nanoscale, 5 (2013)
8326–8339.
- Y.J. Bai, B. Lü, Z.G. Liu, L. Li, D.L. Cui, X.G. Xu, Q.L. Wang,
Solvothermal preparation of graphite-like C3N4 nanocrystals,
J. Cryst. Growth, 247 (2003) 505–508.
- J. Gao, Y. Zhou, Z. Li, S. Yan, N. Wang, Z. Zou, High-yield
synthesis of millimetre-long, semiconducting carbon nitride
nanotubes with intense photoluminescence emission
and reproducible photoconductivity, Nanoscale, 4 (2012)
3687–3692.
- J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Effect of
graphitic carbon nitride microstructures on the activity and
selectivity of photocatalytic CO2 reduction under visible light,
Catal. Sci. Technol., 3 (2013) 1253–1260.
- B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption
activity of porous g-C3N4, Appl. Surf. Sci., 344 (2015) 188–195.
- Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic
carbon nitride as a heterogeneous organocatalyst: from
photochemistry to multipurpose catalysis to sustainable
chemistry, Angew. Chem. Int. Ed., 51 (2012) 68–89.
- F. Al Marzouqi, R. Selvaraj, Y. Kim, Rapid photocatalytic
degradation of acetaminophen and levofloxacin using g-C3N4
nanosheets under solar light irradiation, Mater. Res. Express,
6 (2020) 125538.
- M.A. Oturan, J.J. Aaron, Advanced oxidation processes in
water/wastewater treatment: principles and applications.
A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
- M. Yadav, R. Gupta, R.K. Sharma, Chapter 14–Green and
Sustainable Pathways for Wastewater Purification, S. Ahuja,
Ed., Advances in Water Purification Techniques: Meeting the
Needs of Developed and Developing Countries, Elsevier,
Delhi, 2019, pp. 355–383.
- L. Kotthoff, J. Keller, D. Lörchner, T.F. Mekonnen,
M. Koch, Transformation products of organic contaminants
and residues—overview of current simulation methods,
Molecules, 24 (2019) 753, doi: 10.3390/molecules24040753.
- D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers,
Photocatalytic degradation for environmental applications–a
review, J. Chem. Technol. Biotechnol., 77 (2002) 102–116.
- A. Mills, R.H. Davies, D. Worsley, Water purification by
semiconductor photocatalysis, Chem. Soc. Rev., 22 (1993)
417–425.
- M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation
of volatile organic compounds (VOCs)–a review, Atmos.
Environ., 140 (2016) 117–134.
- C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li, J. Xiao, Abatement
of various types of VOCs by adsorption/catalytic oxidation: a
review, Chem. Eng. J., 370 (2019) 1128–1153.
- J. Zhu, S.L. Wong, S. Cakmak, Nationally representative
levels of selected volatile organic compounds in Canadian
residential indoor air: population-based survey, Environ. Sci.
Technol., 47 (2013) 13276–13283.
- C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson,
Z. Hao, Recent advances in the catalytic oxidation of volatile
organic compounds: a review based on pollutant sorts and
sources, Chem. Rev., 119 (2019) 4471–4568.
- R. Iranpour, H.H. Cox, M.A. Deshusses, E.D. Schroeder,
Literature review of air pollution control biofilters and
biotrickling filters for odor and volatile organic compound
removal, Environ. Prog., 24 (2005) 254–267.
- E. Pelizzetti, C. Minero, V. Carlin, E. Borgarello, Photocatalytic
soil decontamination, Chemosphere, 25 (1992) 343–351.
- S.L. Wang, Y. Zhu, X. Luo, Y. Huang, J. Chai, T.I. Wong,
G.Q. Xu, 2D WC/WO3 heterogeneous hybrid for photocatalytic
decomposition of organic compounds with Vis–NIR
light, Adv. Funct. Mater., 28 (2018) 1705357, doi: 10.1002/
adfm.201705357.
- G.M. Zuo, Z.X. Cheng, H. Chen, G.W. Li, T. Miao, Study
on photocatalytic degradation of several volatile organic
compounds, J. Hazard. Mater., 128 (2006) 158–163.
- R. Perry, I.L. Gee, Vehicle emissions and effects on air quality:
indoors and outdoors, Indoor Built Environ., 3 (1994) 224–236.
- T. Ohura, T. Amagai, X. Shen, S. Li, P. Zhang, L. Zhu,
Comparative study on indoor air quality in Japan and China:
characteristics of residential indoor and outdoor VOCs,
Atmos. Environ., 43 (2009) 6352–6359.
- R. Selvaraj, S.M. Al-Kindy, M. Silanpaa, Y. Kim,
Nanotechnology in environmental remediation: degradation
of volatile organic compounds (VOCs) over visible-lightactive
nanostructured materials, Rev. Environ. Health,
29 (2014) 109–112.
- S. Atthajariyakul, T. Leephakpreeda, Real-time determination
of optimal indoor-air condition for thermal comfort, air
quality and efficient energy usage, Energy Build., 36 (2004)
720–733.
- Y. Lei, M. Ning, Thoughts on control path of the volatile
organic compounds pollution during the period of “13th Five-
Year”, Sci. Environ. Prot., 45 (2017) 14–17.
- J. Ji, Y. Xu, H. Huang, M. He, S. Liu, G. Liu, D.Y. Leung,
Mesoporous TiO2 under VUV irradiation: enhanced
photocatalytic oxidation for VOCs degradation at room
temperature, Chem. Eng. J., 327 (2017) 490–499.
- S. Kumar, A.G. Fedorov, J.L. Gole, Photodegradation of
ethylene using visible light responsive surfaces prepared
from titania nanoparticle slurries, Appl. Catal., B, 57 (2005)
93–107.
- J. Mo, Y. Zhang, R. Yang, Novel insight into VOC removal
performance of photocatalytic oxidation reactors, Indoor Air,
15 (2005) 291–300.
- H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide
photocatalysis in atmospheric chemistry, Chem. Rev.,
112 (2012) 5919–5948.
- M.H. Lee, E. Geva, B.D. Dunietz, Calculation from firstprinciples
of golden rule rate constants for photoinduced
subphthalocyanine/fullerene interfacial charge transfer and
recombination in organic photovoltaic cells, J. Phys. Chem. C,
118 (2014) 9780–9789.
- Y. Yamada, Y. Kanemitsu, Determination of electron and
hole lifetimes of rutile and anatase TiO2 single crystals, Appl.
Phys., 101 (2012) 133907, doi: 10.1063/1.4754831.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
- A.H. Mamaghani, F. Haghighat, C.S. Lee, Photocatalytic
oxidation technology for indoor environment air purification:
the state-of-the-art, Appl. Catal., B, 203 (2017) 247–269.
- M. Jafarikojour, M. Sohrabi, S.J. Royaee, A. Hassanvand,
Evaluation and optimization of a novel immobilized
photoreactor for the degradation of gaseous toluene, CLEAN–
Soil Air Water, 43 (2015) 662–670.
- J. Jeong, K. Sekiguchi, W. Lee, K. Sakamoto, Photodegradation
of gaseous volatile organic compounds (VOCs) using
TiO2 photoirradiated by an ozone-producing UV lamp:
decomposition characteristics, identification of
by-products
and water-soluble organic intermediates, J. Photochem.
Photobiol., A, 169 (2005) 279–287.
- M. Sleiman, P. Conchon, C. Ferronato, J.M. Chovelon,
Photocatalytic oxidation of toluene at indoor air levels
(ppbv): towards a better assessment of conversion, reaction
intermediates and mineralization, Appl. Catal., B, 86 (2009)
159–165.
- F.V. Lopes, R.A. Monteiro, A.M. Silva, G.V. Silva, J.L. Faria,
A.M. Mendes, R.A. Boaventura, Insights into UV-TiO2
photocatalytic degradation of PCE for air decontamination
systems, Chem. Eng. J., 204 (2012) 244–257.
- A.K. Boulamanti, C.J. Philippopoulos, Photocatalytic
degradation of C5–C7 alkanes in the gas–phase, Atmos.
Environ., 43 (2009) 3168–3174.
- M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, S. Cohn,
W.J. Fisk, Energy efficient indoor VOC air cleaning with
activated carbon fiber (ACF) filters, Build. Environ., 47 (2012)
357–367.
- M. Li, B. Lu, Q.F. Ke, Y.J. Guo, Y.P. Guo, Synergetic effect
between adsorption and photodegradation on nanostructured
TiO2/activated carbon fiber felt porous composites for
toluene removal, J. Hazard. Mater., 333 (2017) 88–98.
- H.H. Chun, W.K. Jo, Adsorption and photocatalysis of 2-ethyl-1-hexanol over graphene oxide–TiO2 hybrids post-treated
under various thermal conditions, Appl. Catal., B, 180 (2016)
740–750.
- A.K. Boulamanti, C.A. Korologos, C.J. Philippopoulos, The
rate of photocatalytic oxidation of aromatic volatile organic
compounds in the gas-phase, Atmos. Environ., 42 (2008)
7844–7850.
- J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van
Langenhove, Abatement and degradation pathways of toluene
in indoor air by positive corona discharge, Chemosphere,
68 (2007) 1821–1829.
- O. Debono, F. Thevenet, P. Gravejat, V. Hequet, C. Raillard,
L. Lecoq, N. Locoge, Toluene photocatalytic oxidation at ppbv
levels: kinetic investigation and carbon balance determination,
Appl. Catal., B, 106 (2011) 600–608.
- W. Den, C.C. Wang, Enhancement of adsorptive chemical
filters via titania photocatalysts to remove vapor-phase
toluene and isopropanol, Sep. Purif. Technol., 85 (2012)
101–111.
- W.A. Jacoby, D.M. Blake, J.A. Penned, J.E. Boulter, L.M. Vargo,
M.C. George, S.K. Dolberg, Heterogeneous photocatalysis
for control of volatile organic compounds in indoor air, J. Air
Waste Manage. Assoc., 46 (1996) 891–898.
- F. Thevenet, C. Guillard, A. Rousseau, Acetylene
photocatalytic oxidation using continuous flow reactor: gas
phase and adsorbed phase investigation, assessment of the
photocatalyst deactivation, Chem. Eng. J., 244 (2014) 50–58.
- H. Ourrad, F. Thevenet, V. Gaudion, V. Riffault, Limonene
photocatalytic oxidation at ppb levels: Assessment of
gas phase reaction intermediates and secondary organic
aerosol heterogeneous formation, Appl. Catal., B, 168 (2015)
183–194.
- L. Yang, Z. Liu, J. Shi, H. Hu, W. Shangguan, Design
consideration of photocatalytic oxidation reactors using
TiO2-coated foam nickels for degrading indoor gaseous
formaldehyde, Catal. Today, 126 (2007) 359–368.
- W.H. Ching, M. Leung, D.Y. Leung, Solar photocatalytic
degradation of gaseous formaldehyde by sol–gel TiO2 thin
film for enhancement of indoor air quality, Sol Energy,
77 (2004) 129–135.
- M. El-Roz, M. Kus, P. Cool, F. Thibault-Starzyk, New
operando IR technique to study the photocatalytic activity
and selectivity of TiO2 nanotubes in air purification: influence
of temperature, UV intensity, and VOC concentration, J. Phys.
Chem. C, 116 (2012) 13252–13263.
- J. Mo, Y. Zhang, Q. Xu, R. Yang, Effect of TiO2/adsorbent
hybrid photocatalysts for toluene decomposition in gas
phase, J. Hazard. Mater., 168 (2009) 276–281.
- V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann,
S.C. Pillai, Visible-light activation of TiO2 photocatalysts:
advances in theory and experiments, J. Photochem. Photobiol.,
C, 25 (2015) 1–29.
- S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, Z. Zou,
Band structure engineering of carbon nitride: in search of a
polymer photocatalyst with high photooxidation property,
ACS Catal., 3 (2013) 912–919.
- N. Abbas, M. Hussain, N. Russo, G. Saracco, Studies on
the activity and deactivation of novel optimized TiO2
nanoparticles for the abatement of VOCs, Chem. Eng. J.,
175 (2011) 330–340.
- T. Yan, J. Long, X. Shi, D. Wang, Z. Li, X. Wang, Efficient
photocatalytic degradation of volatile organic compounds
by porous indium hydroxide nanocrystals, Environ. Sci.
Technol., 44 (2010) 1380–1385.
- F. Petronella, A. Truppi, M. Dell’Edera, A. Agostiano,
M.L. Curri, R. Comparelli, Scalable synthesis of mesoporous
TiO2 for environmental photocatalytic applications, Materials,
12 (2019) 1853.
- S. Apollo, M.S. Onyongo, A. Ochieng, UV/H2O2/TiO2/zeolite
hybrid system for treatment of molasses wastewater, Iran.
J. Chem. Chem. Eng., 33 (2014) 107–117.
- A. Fujishima, X. Zhang, Titanium dioxide photocatalysis:
present situation and future approaches, C.R. Chim., 9 (2006)
750–760.
- G. Song, C. Luo, Q. Fu, C. Pan, Hydrothermal synthesis of the
novel rutile-mixed anatase TiO2 nanosheets with dominant
- facets for high photocatalytic activity, RSC Adv., 6 (2016)
84035–84041.
- A.A. Assadi, A. Bouzaza, D. Wolbert, P. Petit, Isovaleraldehyde
elimination by UV/TiO2 photocatalysis: comparative study of
the process at different reactors configurations and scales,
Environ. Sci. Pollut. Res., 21 (2014) 11178–11188.
- A.A. Assadi, J. Palau, A. Bouzaza, D. Wolbert, Modeling of
a continuous photocatalytic reactor for isovaleraldehyde
oxidation: effect of different operating parameters and
chemical degradation pathway, Chem. Eng. Res. Des.,
91 (2013) 1307–1316.
- A.A. Assadi, A. Bouzaza, D. Wolbert, Study of synergetic effect
by surface discharge plasma/TiO2 combination for indoor
air treatment: sequential and continuous configurations at
pilot scale, J. Photochem. Photobiol., A, 310 (2015) 148–154.
- A.A. Assadi, A. Bouzaza, I. Soutrel, P. Petit, K. Medimagh,
D. Wolbert, A study of pollution removal in exhaust gases
from animal quartering centers by combining photocatalysis
with surface discharge plasma: from pilot to industrial scale,
Chem. Eng. Process. Process Intensif., 111 (2017) 1–6.
- A.A. Assadi, A. Bouzaza, D. Wolbert, Comparative study
between laboratory and large pilot scales for VOC’s removal
from gas streams in continuous flow surface discharge
plasma, Chem. Eng. Res. Des., 106 (2016) 308–314.
- L. Zou, Y. Luo, M. Hooper, E, Hu, Removal of VOCs by
photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst, Chem. Eng. Process. Process Intensif., 45 (2006)
959–964.
- X. Yang, J.A. Koziel, Y. Laor, W. Zhu, J.H. van Leeuwen,
W.S. Jenks, R. Armon, VOC removal from manure gaseous
emissions with UV photolysis and UV-TiO2 photocatalysis,
Catalysts, 10 (2020) 607, doi: 10.3390/catal10060607.
- R. Acharya, K. Parida, A review on TiO2/g-C3N4 visible-lightresponsive
photocatalysts for sustainable energy generation
and environmental remediation, J. Environ. Chem. Eng.,
8 (2020) 103896, doi: 10.1016/j.jece.2020.103896.
- G. Xiao, S. Xu, P. Li, H. Su, Visible-light-driven activity and
synergistic mechanism of TiO2@g-C3N4 heterostructured
photocatalysts fabricated through a facile and green procedure
for various toxic pollutants removal, Nanotechnology,
29 (2018) 315601.
- S. Zhang, J. Li, M. Zeng, G. Zhao, J. Xu, W. Hu, X. Wang, In situ
synthesis of water-soluble magnetic graphitic carbon nitride
photocatalyst and its synergistic catalytic performance, ACS
Appl. Mater. Interfaces, 5 (2013) 12735–12743.
- X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic
activities of heterojunction semiconductors Bi2O3/BaTiO3: a
strategy for the design of efficient combined photocatalysts,
J. Phys. Chem. C, 111 (2007) 18288–18293.
- K.I. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada,
Preparation of graphitic carbon nitride (g-C3N4)/WO3
composites and enhanced visible-light-driven photodegradation
of acetaldehyde gas, J. Hazard. Mater., 260 (2013)
475–482.
- X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, X. Ou, Fabrication of V2O5/g-C3N4 heterojunction composites and its enhanced visible
light photocatalytic performance for degradation of gaseous
ortho-dichlorobenzene, J. Taiwan Inst. Chem. Eng., 93 (2018)
158–165.
- Y. Li, J. Wang, Y. Yang, Y. Zhang, D. He, Q. An, G. Cao, Seedinduced
growing various TiO2 nanostructures on
g-C3N4
nanosheets with much enhanced photocatalytic activity
under visible light, J. Hazard. Mater., 292 (2015) 79–89.
- R. Sun, Q. Shi, M. Zhang, L. Xie, J. Chen, X. Yang, W. Zhao,
Enhanced photocatalytic oxidation of toluene with a corallike
direct Z-scheme BiVO4/g-C3N4 photocatalyst, J. Alloys
Compd., 714 (2017) 619–626.
- W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity
of g-C3N4 for selective CO2 reduction to CH3OH via facile
coupling of ZnO: a direct Z-scheme mechanism, J. Mater.
Chem. A, 3 (2015) 19936–19947.
- Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of
single-crystalline Ag3PO4 sub-microcrystals on photocatalytic
properties, J. Am. Chem. Soc., 133 (2011) 6490–6492.
- Y. Shen, Z. Zhu, X. Wang, J. Gong, Y. Zhang, Synthesis
of Z-scheme g-C3N4/Ag/Ag3PO4 composite for enhanced
photocatalytic degradation of phenol and selective oxidation
of gaseous isopropanol, Mater. Res. Bull., 107 (2018) 407–415.
- Y. Li, X. Wu, J. Li, K. Wang, G. Zhang, Z-scheme g-C3N4@
CsxWO3 heterostructure as smart window coating for UV
isolating, Vis penetrating, NIR shielding and full spectrum
photocatalytic decomposing VOCs, Appl. Catal., B, 229 (2018)
218–226.
- Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, Construction
of heterostructured g-C3N4/Ag/TiO2 microspheres with
enhanced photocatalysis performance under visible-light
irradiation, ACS Appl. Mater. Interfaces, 6 (2014) 14405–14414.
- Y. Gong, X. Quan, H. Yu, H., S. Chen, Synthesis of Z-scheme
Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light
photocatalytic activity for 2,4-dichlorophenol degradation,
Appl. Catal., B, 219 (2017) 439–449.
- H.T. Ren, S.Y. Jia, Y. Wu, S.H. Wu, T.H. Zhang, X. Han,
Improved photochemical reactivities of Ag2O/g-C3N4 in
phenol degradation under UV and visible light, Ind. Eng.
Chem. Res., 53 (2014) 17645–17653.
- R. He, J. Zhou, H. Fu, S. Zhang, C. Jiang, Room-temperature in
situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst
with enhanced photocatalytic activity, Appl. Surf. Sci.,
430 (2018) 273–282.
- X. Zou, C. Ran, Y. Dong, Z. Chen, D. Dong, D. Hu,
Y. Cui, Synthesis and characterization of BiPO4/g-C3N4
nanocomposites with significantly enhanced visible-light
photocatalytic activity for benzene degradation, RSC Adv.,
6 (2016) 20664–20670.
- V.D. Dao, T.D. Nguyen, N. Van Noi, N.M. Ngoc, T.D. Pham,
P. Van Quan, H.T. Trang, Superior visible light photocatalytic
activity of g-C3N4/NiWO4 direct Z system for degradation of
gaseous toluene, J. Solid State Chem., 272 (2019) 62–68.
- M. Zhang, X. Liu, X. Zeng, M. Wang, J. Shen, R. Liu,
Photocatalytic degradation of toluene by In2S3/g-C3N4
heterojunctions, Chem. Phys. Lett., 7 (2020) 100049, doi:
10.1016/j.cpletx.2020.100049.
- R. He, K. Cheng, Z. Wei, S. Zhang, D Xu, Room-temperature
in situ fabrication and enhanced photocatalytic activity of
direct Z-scheme BiOI/g-C3N4 photocatalyst, Appl. Surf. Sci.,
465 (2019) 964–972.
- S. Weon, F. He, W. Choi, Status and challenges in photocatalytic
nanotechnology for cleaning air polluted with volatile
organic compounds: visible light utilization and catalyst
deactivation, Environ. Sci. Nano, 6 (2019) 3185–3214.