References

  1. L. Zhong, J.J. Brancho, S. Batterman, B.M. Bartlett, C. Godwin, Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation, Appl. Catal., B, 216 (2017) 122–132.
  2. W. Zou, B. Gao, Y.S. Ok, L. Dong, Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review, Chemosphere, 218 (2019) 845–859.
  3. R. Xie, J. Ji, K. Guo, D. Lei, Q. Fan, D.Y. Leung, H. Huang, Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: roles of sulfate and hydroxyl radicals, Chem. Eng. J., 356 (2019) 632–640.
  4. Y. Shu, Y. Xu, H. Huang, J. Ji, S. Liang, M. Wu, D.Y. Leung, Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185 nm VUV irradiation, Chemosphere, 208 (2018) 550–558.
  5. A.C. Rai, P. Kumar, F. Pilla, A.N. Skouloudis, S. Di Sabatino, C. Ratti, D. Rickerby, End-user perspective of low-cost sensors for outdoor air pollution monitoring, Sci. Total Environ., 607 (2017) 691–705.
  6. F.I. Khan, A.K. Ghoshal, Removal of volatile organic compounds from polluted air, J. Loss Prev. Process Ind., 13 (2000) 527–545.
  7. L. Zhong, F. Haghighat, P. Blondeau, J. Kozinski, Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications, Build. Environ., 45 (2010) 2689–2697.
  8. L. Lin, Y. Chai, B. Zhao, W. Wei, D. He, B. He, Q. Tang, Photocatalytic oxidation for degradation of VOCs, Open J. Inorg. Chem., 3 (2013) 14–25.
  9. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M.H. Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015) 1–36.
  10. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications, J. Catal., 3 (2013) 189–218.
  11. Y. Zhang, T. Mori, L. Niu, J. Ye, Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion, Energy Environ. Sci., 4 (2011) 4517–4521.
  12. L. Kong, J. Wang, F. Ma, M. Sun, J. Quan, Graphitic carbon nitride nanostructures: catalysis, Appl. Mater. Today, 16 (2019) 388–424.
  13. M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, Direct Z-scheme CdFe2O4/g-C3N4 hybrid photocatalysts for highly efficient ceftiofur sodium photodegradation, J. Mater. Sci. Technol., 56 (2020) 133–142.
  14. B. Shao, Z. Liu, G. Zeng, Z. Wu, Y. Liu, M. Cheng, H. Feng, Nitrogen-doped hollow mesoporous carbon spheres modified g-C3N4/Bi2O3 direct dual semiconductor photocatalytic system with enhanced antibiotics degradation under visible light, ACS Sustainable Chem. Eng., 6 (2018) 16424–16436.
  15. N.T.T. Truc, D.S. Duc, D. Van Thuan, T. Al Tahtamouni, T.D. Pham, N.T. Hanh, N.T.P. Le Chi, The advanced photocatalytic degradation of atrazine by direct Z-scheme Cu doped ZnO/g-C3N4, Appl. Surf. Sci., 489 (2019) 875–882.
  16. N.T.T. Truc, T.D. Pham, D. Van Thuan, D.T. Tran, M.V. Nguyen, N.M. Dang, H.T. Trang, Superior activity of Cu-NiWO4/g-C3N4 Z direct system for photocatalytic decomposition of VOCs in aerosol under visible light, J. Alloys Compd., 798 (2019) 12–18.
  17. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, M. Antonietti, Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc., 131 (2009) 1680–1681.
  18. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391 (2017) 72–123.
  19. X. Wang, S. Blechert, M. Antonietti, Polymeric graphitic carbon nitride for heterogeneous photocatalysis, ACS Catal., 2 (2012) 1596–1606.
  20. D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science, 271 (1996) 53–55.
  21. B. Zhu, L. Zhang, B. Cheng, J. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4: a review, Appl. Catal., B, 224 (2018) 983–999.
  22. Y. Xu, S.P. Gao, Bandgap of C3N4 in the GW approximation, Int. J. Hydrogen Energy, 37 (2012) 11072–11080.
  23. D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metalfree photocatalyst systems: a review, Appl. Catal., B, 206 (2017) 556–588.
  24. J. Fu, J. Yu, C. Jiang, B. Cheng, g‐C3N4‐Based heterostructured photocatalysts, Adv. Energy Mater., 8 (2018) 1701503, doi: 10.1002/aenm.201701503.
  25. D. Liang, T. Jing, Y. Ma, J. Hao, G. Sun, M. Deng, Photocatalytic properties of g-C6N6/g-C3N4 heterostructure: a theoretical study, J. Phys. Chem. C, 120 (2016) 24023–24029.
  26. Y. Ren, D. Zeng, W.J. Ong, Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review, Chin. J. Catal., 40 (2019) 289–319.
  27. C.M. Soukoulis, Ed., Photonic Bandgap Materials, Vol. 315, Springer Science & Business Media, Iowa, 2012.
  28. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al‐Ghamdi, Heterojunction photocatalysts, Adv. Mater., 29 (2017) 1601694, doi: 10.1002/adma.201601694.
  29. L.V. Bora, R. K, Mewada, Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review, Renewable Sustainable Energy Rev., 76 (2017) 1393–1421.
  30. H. Katsumata, Y. Tachi, T. Suzuki, S. Kaneco, Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts, RSC Adv., 4 (2014) 21405–21409.
  31. W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?, Chem. Rev., 116 (2016) 7159–7329.
  32. A. Sudhaik, P. Raizada, P. Shandilya, D.Y. Jeong, J.H. Lim, P. Singh, Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants, J. Ind. Eng. Chem., 67 (2018) 28–51.
  33. H. Li, Z. Zhang, Y. Liu, W. Cen, X. Luo, Functional group effects on the HOMO–LUMO gap of g-C3N4, Nanomaterials, 8 (2018) 589, doi: 10.3390/nano8080589.
  34. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun., 5 (2014) 1–8.
  35. Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review, Nanoscale, 7 (2015) 15–37.
  36. T.T. Pham, E.W. Shin, Influence of g-C3N4 precursors in g-C3N4/NiTiO3 composites on photocatalytic behavior and the interconnection between g-C3N4 and NiTiO3, Langmuir, 34 (2018) 13144–13154.
  37. L. Tang, C. Feng, Y. Deng, G. Zeng, J. Wang, Y. Liu, J. Wang, Enhanced photocatalytic activity of ternary
    Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: the high potential band protection mechanism, Appl. Catal., B, 230 (2018) 102–114.
  38. Q. Gu, Z. Gao, H. Zhao, Z. Lou, Y. Liao, C. Xue, Temperaturecontrolled morphology evolution of graphitic carbon nitride nanostructures and their photocatalytic activities under visible light, RSC Adv., 5 (2015) 49317–49325.
  39. Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, H. Li, Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution, RSC Adv., 5 (2015) 101552–101562.
  40. H. Yan, Y. Chen, S. Xu, Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light, Int. J. Hydrogen Energy, 37 (2012) 125–133.
  41. W. Ho, Z. Zhang, M. Xu, X. Zhang, X. Wang, Y. Huang, Enhanced visible-light-driven photocatalytic removal of NO: effect on layer distortion on g-C3N4 by H2 heating, Appl. Catal., B, 179 (2015) 106–112.
  42. J. Chen, Z. Hong, Y. Chen, B. Lin, B. Gao, One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light, Mater. Lett., 145 (2015) 129–132.
  43. G. Wu, S.S. Thind, J. Wen, K. Yan, A. Chen, A novel nanoporous α-C3N4 photocatalyst with superior high visible light activity, Appl. Catal., B, 142 (2013) 590–597.
  44. Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 (2012) 5300–5303.
  45. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem., 21 (2011) 14398–14401.
  46. F. Dong, Z. Wang, Y. Sun, W.K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 401 (2013) 70–79.
  47. P. Yang, J. Zhao, W. Qiao, L. Li, Z. Zhu, Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride, Nanoscale, 7 (2015) 18887–18890.
  48. D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Highly efficient photocatalytic H2 evolution from water using visible light and structure‐controlled graphitic carbon nitride, Angew. Chem. Int. Ed., 53 (2014) 9240–9245.
  49. G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, J. Mater. Chem., 22 (2012) 8083–8091.
  50. Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Metalfree activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants, Phys. Chem. Chem. Phys., 14 (2012) 1455–1462.
  51. Y. Fang, X. Li, X. Wang, Synthesis of polymeric carbon nitride films with adhesive interfaces for solar water splitting devices, ACS Catal., 8 (2018) 8774–8780.
  52. Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti, X. Wang, Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution, J. Mater. Chem., 21 (2011) 13032–13039.
  53. L. Shi, L. Liang, F. Wang, J. Ma, J. Sun, Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst, Catal. Sci. Technol., 4 (2014) 3235–3243.
  54. B. Long, J. Lin, X. Wang, Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis, J. Mater. Chem. A, 2 (2014) 2942–2951.
  55. Y. Wang, J. Yao, H. Li, D. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc., 133 (2011) 2362–2365.
  56. J. Liu, H. Wang, M. Antonietti, Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis, Chem. Soc. Rev., 45 (2016) 2308–2326.
  57. Y. He, L. Zhang, B. Teng, M. Fan, New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel, Environ. Sci. Technol., 49 (2015) 649–656.
  58. Y. Zheng, L. Lin, B. Wang, X. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis, Angew. Chem. Int. Ed., 54 (2015) 12868–12884.
  59. J. Hong, D.K. Hwang, R. Selvaraj, Y. Kim, Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics, J. Ind. Eng. Chem., 79 (2019) 473–481.
  60. X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, Z. Zou, Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production, Appl. Catal., B, 229 (2018) 41–51.
  61. L. Yao, D. Wei, Y. Ni, D. Yan, C. Hu, Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: highly efficient visible light-induced H2-generation, Nano Energy, 26 (2016) 248–256.
  62. L. Zhang, Q. Liu, Y. Chai, W.L. Dai, Facile construction of phosphate incorporated graphitic carbon nitride with mesoporous structure and superior performance for H2 production, Int. J. Hydrogen Energy, 43 (2018) 5591–5602.
  63. T. Montalvo‐Herrera, D. Sánchez‐Martínez, D.B. Hernandez‐Uresti, E. Zarazua‐Morin, Facile preparation of KBiO3/g‐C3N4 composites with microwave irradiation for photocatalytic hydrogen production, J. Chem. Technol. Biotechnol., 94 (2019) 3440–3446.
  64. A. Akhundi, A. Habibi-Yangjeh, Novel g-C3N4/Ag2SO4 nanocomposites: fast microwave-assisted preparation and enhanced photocatalytic performance towards degradation of organic pollutants under visible light, J. Colloid Interface Sci., 482 (2016) 165–174.
  65. Z. Zhang, X. Li, H. Chen, G. Shao, R. Zhang, H. Lu, Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nanocomposites by microwave-assisted method, Mater. Res. Express, 5 (2018) 015021.
  66. X.J. Wang, W.Y. Yang, F.T. Li, Y.B. Xue, R.H. Liu, Y.J. Hao, In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties, Ind. Eng. Chem. Res., 52 (2013) 17140–17150.
  67. R.I. Walton, Subcritical solvothermal synthesis of condensed inorganic materials, Chem. Soc. Rev., 31 (2002) 230–238.
  68. M. Li, L. Zhang, X. Fan, M. Wu, Y. Du, M. Wang, J. Shi, Dual synergetic effects in MoS2/pyridine-modified g-C3N4 composite for highly active and stable photocatalytic hydrogen evolution under visible light, Appl. Catal., B, 190 (2016) 36–43.
  69. W. Chen, T.Y. Liu, T. Huang, X.H. Liu, G.R. Duan, X.J. Yang, S.M. Chen, A novel yet simple strategy to fabricate visible light responsive C, N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation, RSC Adv., 5 (2015) 101214–101220.
  70. Z. Jiang, C. Zhu, W. Wan, K. Qian, J. Xie, Constructing graphite-like carbon nitride modified hierarchical yolk–shell TiO2 spheres for water pollution treatment and hydrogen production, J. Mater. Chem. A, 4 (2016) 1806–1818.
  71. Q.Z. Huang, J.C. Wang, P.P. Wang, H.C. Yao, Z.J. Li, In-situ growth of mesoporous Nb2O5 microspheres on g-C3N4 nanosheets for enhanced photocatalytic H2 evolution under visible light irradiation, Int. J. Hydrogen Energy, 42 (2017) 6683–6694.
  72. F. Chang, J. Zhang, Y. Xie, J. Chen, C. Li, J. Wang, X. Hu, Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4–TiO2 hybrids, Appl. Surf. Sci., 311 (2014) 574–581.
  73. C. Li, Z. Sun, Y. Xue, G. Yao, S. Zheng, A facile synthesis of g-C3N4/TiO2 hybrid photocatalysts by sol–gel method and its enhanced photodegradation towards methylene blue under visible light, Adv. Powder Technol., 27 (2016) 330–337.
  74. J. Li, Y. Liu, H. Li, C. Chen, Fabrication of g-C3N4/TiO2 composite photocatalyst with extended absorption wavelength range and enhanced photocatalytic performance, J. Photochem. Photobiol., A, 317 (2016) 151–160.
  75. X. Tian, Y.J. Sun, Y.J. He, X.J. Wang, J. Zhao, S.Z. Qiao, F.T. Li, Surface P atom grafting of g-C3N4 for improved local spatial charge separation and enhanced photocatalytic H2 production, J. Mater. Chem. A, 7 (2019) 7628–7635.
  76. L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu, Y. Jie, J. Ye, A surface modification resultant thermally oxidized porous
    g-C3N4 with enhanced photocatalytic hydrogen production, Appl. Catal., B, 204 (2017) 335–345.
  77. G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen, G.Q. Lu, H.M. Cheng, Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4, J. Am. Chem. Soc., 132 (2010) 11642–11648.
  78. H. Wang, C. Yang, M. Li, F. Chen, Y. Cui, Enhanced photocatalytic hydrogen production of restructured B/F codoped g-C3N4 via post-thermal treatment, Mater. Lett., 212 (2018) 319–322.
  79. M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4, Appl. Catal., B, 220 (2018) 222–233.
  80. Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, C. Xue, Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production, Appl. Catal., B, 140 (2013) 164–168.
  81. W. Lin, Y. Cao, P. Wang, M. Sun, Unified treatment for plasmon–exciton co-driven reduction and oxidation reactions, Langmuir, 33 (2017) 12102–12107.
  82. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R.S. Ruoff, Largearea synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312–1314.
  83. J. Liu, H. Wang, Z.P. Chen, H. Moehwald, S. Fiechter, R. van de Krol, M. Antonietti, Microcontact‐printing‐assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application, Adv. Mater., 27 (2015) 712–718.
  84. S. Zhang, N.T. Hang, Z. Zhang, H. Yue, W. Yang, Preparation of g-C3N4/graphene composite for detecting NO2 at room temperature, Nanomaterials, 7 (2017) 12, doi: 10.3390/ nano7010012.
  85. Y. Zhao, F. Zhao, X. Wang, C. Xu, Z. Zhang, G. Shi, L. Qu, Graphitic carbon nitride nanoribbons: graphene‐assisted formation and synergic function for highly efficient hydrogen evolution, Angew. Chem. Int. Ed., 53 (2014) 13934–13939.
  86. Z. Zhang, F. Xiao, L. Qian, J. Xiao, S. Wang, Y. Liu, Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high‐performance, flexible, all‐solid‐state asymmetric supercapacitors, Adv. Energy Mater., 4 (2014) 1400064, doi: 10.1002/aenm.201400064.
  87. H. Huang, S. Yang, R. Vajtai, X. Wang, P.M. Ajayan, Pt‐decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts, Adv. Mater., 26 (2014) 5160–5165.
  88. J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution, ACS Nano., 9 (2015) 931–940.
  89. Y. Shi, L. Fu, X. Chen, J. Guo, F. Yang, J. Wang, Y. Hu, Hypophosphite/graphitic carbon nitride hybrids: preparation and flame-retardant application in thermoplastic polyurethane, Nanomaterials, 7 (2017) 259, doi: 10.3390/nano7090259.
  90. D. Xiao, K. Dai, Y. Qu, Y. Yin, H. Chen, Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light, Appl. Surf. Sci., 358 (2015) 181–187.
  91. N.M. Deraz, The comparative jurisprudence of catalysts preparation methods: I. Precipitation and impregnation methods, J. Ind. Environ. Chem., 2 (2018) 19–21.
  92. S. Samanta, S. Martha, K. Parida, Facile synthesis of Au/g‐C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible‐light irradiation, ChemCatChem, 6 (2014) 1453–1462.
  93. N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, G. Lu, Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation, Chin. J. Catal., 40 (2019) 352–361.
  94. N. Xiao, Y. Li, S. Li, X. Li, Y. Gao, L. Ge, G. Lu, In-situ synthesis of PdAg/g-C3N4 composite photocatalyst for highly efficient photocatalytic H2 generation under visible light irradiation, Int. J. Hydrogen Energy, 44 (2019) 19929–19941.
  95. A.E.A. Bakr, W.M. El Rouby, M.D. Khan, A.A. Farghali, B. Xulu, N. Revaprasadu, Synthesis and characterization of
    Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation, Sol. Energy, 193 (2019) 403–412.
  96. Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z-scheme α‐Fe2O3/g‐C3N4 hybrid for enhanced photocatalytic CO2 reduction, Adv. Mater., 30 (2018) 1706108, doi: 10.1002/adma.201706108.
  97. L. Xu, J. Xia, H. Xu, S. Yin, K. Wang, L. Huang, H. Li, Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance,
    J. Power Sources, 245 (2014) 866–874.
  98. H. Guo, M. Chen, Q. Zhong, Y. Wang, W. Ma, J. Ding, Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visiblelight photocatalytic reduction of CO2 to CH3OH, J. CO2 Util., 33 (2019) 233–241.
  99. X.-N. Wei, H.-L. Wang, X.-K. Wang, W.-F. Jiang, Facile fabrication of mesoporous g-C3N4/TiO2 photocatalyst for efficient degradation of DNBP under visible light irradiation, Appl. Surf. Sci., 426 (2017) 1271–1280.
  100. Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution, Appl. Catal., B, 230 (2018) 260–268.
  101. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal., B, 187 (2016) 47–58.
  102. L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Efficient visiblelight photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra, Appl. Surf. Sci., 351 (2015) 1146–1154.
  103. D. Li, J. Zan, L. Wu, S. Zuo, H. Xu, D. Xia, Heterojunction tuning and catalytic efficiency of g-C3N4–Cu2O with glutamate, Ind. Eng. Chem. Res., 58 (2019) 4000–4009.
  104. L. Liu, Y. Qi, J. Hu, W. An, S. Lin, Y. Liang, W. Cui, Stable Cu2O@g-C3N4 core@shell nanostructures: efficient visiblelight photocatalytic hydrogen evolution, Mater. Lett., 158 (2015) 278–281.
  105. P.Y. Kuang, Y.Z. Su, G.F. Chen, Z. Luo, S.Y. Xing, N. Li, Z, Q, Liu, g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance, Appl. Surf. Sci., 358 (2015) 296–303.
  106. J. Liu, X.T. Yan, X.S. Qin, S.J. Wu, H. Zhao, W.B. Yu, B.L. Su, Light-assisted preparation of heterostructured
    g-C3N4/ZnO nanorods arrays for enhanced photocatalytic hydrogen performance, Catal. Today, 355 (2019) 932–936.
  107. P. Yang, J. Wang, G. Yue, R. Yang, P. Zhao, L. Yang, D. Astruc, Constructing mesoporous g-C3N4/ZnO nanosheets catalyst for enhanced visible-light driven photocatalytic activity, J. Photochem. Photobiol., A, 388 (2020) 112169, doi: 10.1016/j.jphotochem.2019.112169.
  108. W.K. Jo, N.C.S. Selvam, Enhanced visible light-driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite, J. Hazard. Mater., 299 (2015) 462–470.
  109. S. Balu, S. Velmurugan, S. Palanisamy, S.W. Chen, V. Velusamy, T.C. Yang, E.S.I. El-Shafey, Synthesis of α-Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media, J. Taiwan Inst. Chem. Eng., 99 (2019) 258–267.
  110. S. Cao, J. Yu, g-C3N4-based photocatalysts for hydrogen generation, J. Phys. Chem. Lett., 5 (2014) 2101–2107.
  111. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review, Nanoscale, 5 (2013) 8326–8339.
  112. Y.J. Bai, B. Lü, Z.G. Liu, L. Li, D.L. Cui, X.G. Xu, Q.L. Wang, Solvothermal preparation of graphite-like C3N4 nanocrystals, J. Cryst. Growth, 247 (2003) 505–508.
  113. J. Gao, Y. Zhou, Z. Li, S. Yan, N. Wang, Z. Zou, High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity, Nanoscale, 4 (2012) 3687–3692.
  114. J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light, Catal. Sci. Technol., 3 (2013) 1253–1260.
  115. B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C3N4, Appl. Surf. Sci., 344 (2015) 188–195.
  116. Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry, Angew. Chem. Int. Ed., 51 (2012) 68–89.
  117. F. Al Marzouqi, R. Selvaraj, Y. Kim, Rapid photocatalytic degradation of acetaminophen and levofloxacin using g-C3N4 nanosheets under solar light irradiation, Mater. Res. Express, 6 (2020) 125538.
  118. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  119. M. Yadav, R. Gupta, R.K. Sharma, Chapter 14–Green and Sustainable Pathways for Wastewater Purification, S. Ahuja, Ed., Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries, Elsevier, Delhi, 2019, pp. 355–383.
  120. L. Kotthoff, J. Keller, D. Lörchner, T.F. Mekonnen, M. Koch, Transformation products of organic contaminants and residues—overview of current simulation methods, Molecules, 24 (2019) 753, doi: 10.3390/molecules24040753.
  121. D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Photocatalytic degradation for environmental applications–a review, J. Chem. Technol. Biotechnol., 77 (2002) 102–116.
  122. A. Mills, R.H. Davies, D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc. Rev., 22 (1993) 417–425.
  123. M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)–a review, Atmos. Environ., 140 (2016) 117–134.
  124. C. Yang, G. Miao, Y. Pi, Q. Xia, J. Wu, Z. Li, J. Xiao, Abatement of various types of VOCs by adsorption/catalytic oxidation: a review, Chem. Eng. J., 370 (2019) 1128–1153.
  125. J. Zhu, S.L. Wong, S. Cakmak, Nationally representative levels of selected volatile organic compounds in Canadian residential indoor air: population-based survey, Environ. Sci. Technol., 47 (2013) 13276–13283.
  126. C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, Z. Hao, Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources, Chem. Rev., 119 (2019) 4471–4568.
  127. R. Iranpour, H.H. Cox, M.A. Deshusses, E.D. Schroeder, Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal, Environ. Prog., 24 (2005) 254–267.
  128. E. Pelizzetti, C. Minero, V. Carlin, E. Borgarello, Photocatalytic soil decontamination, Chemosphere, 25 (1992) 343–351.
  129. S.L. Wang, Y. Zhu, X. Luo, Y. Huang, J. Chai, T.I. Wong, G.Q. Xu, 2D WC/WO3 heterogeneous hybrid for photocatalytic decomposition of organic compounds with Vis–NIR light, Adv. Funct. Mater., 28 (2018) 1705357, doi: 10.1002/ adfm.201705357.
  130. G.M. Zuo, Z.X. Cheng, H. Chen, G.W. Li, T. Miao, Study on photocatalytic degradation of several volatile organic compounds, J. Hazard. Mater., 128 (2006) 158–163.
  131. R. Perry, I.L. Gee, Vehicle emissions and effects on air quality: indoors and outdoors, Indoor Built Environ., 3 (1994) 224–236.
  132. T. Ohura, T. Amagai, X. Shen, S. Li, P. Zhang, L. Zhu, Comparative study on indoor air quality in Japan and China: characteristics of residential indoor and outdoor VOCs, Atmos. Environ., 43 (2009) 6352–6359.
  133. R. Selvaraj, S.M. Al-Kindy, M. Silanpaa, Y. Kim, Nanotechnology in environmental remediation: degradation of volatile organic compounds (VOCs) over visible-lightactive nanostructured materials, Rev. Environ. Health, 29 (2014) 109–112.
  134. S. Atthajariyakul, T. Leephakpreeda, Real-time determination of optimal indoor-air condition for thermal comfort, air quality and efficient energy usage, Energy Build., 36 (2004) 720–733.
  135. Y. Lei, M. Ning, Thoughts on control path of the volatile organic compounds pollution during the period of “13th Five- Year”, Sci. Environ. Prot., 45 (2017) 14–17.
  136. J. Ji, Y. Xu, H. Huang, M. He, S. Liu, G. Liu, D.Y. Leung, Mesoporous TiO2 under VUV irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature, Chem. Eng. J., 327 (2017) 490–499.
  137. S. Kumar, A.G. Fedorov, J.L. Gole, Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries, Appl. Catal., B, 57 (2005) 93–107.
  138. J. Mo, Y. Zhang, R. Yang, Novel insight into VOC removal performance of photocatalytic oxidation reactors, Indoor Air, 15 (2005) 291–300.
  139. H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry, Chem. Rev., 112 (2012) 5919–5948.
  140. M.H. Lee, E. Geva, B.D. Dunietz, Calculation from firstprinciples of golden rule rate constants for photoinduced subphthalocyanine/fullerene interfacial charge transfer and recombination in organic photovoltaic cells, J. Phys. Chem. C, 118 (2014) 9780–9789.
  141. Y. Yamada, Y. Kanemitsu, Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals, Appl. Phys., 101 (2012) 133907, doi: 10.1063/1.4754831.
  142. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  143. A.H. Mamaghani, F. Haghighat, C.S. Lee, Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art, Appl. Catal., B, 203 (2017) 247–269.
  144. M. Jafarikojour, M. Sohrabi, S.J. Royaee, A. Hassanvand, Evaluation and optimization of a novel immobilized photoreactor for the degradation of gaseous toluene, CLEAN– Soil Air Water, 43 (2015) 662–670.
  145. J. Jeong, K. Sekiguchi, W. Lee, K. Sakamoto, Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of
    by-products and water-soluble organic intermediates, J. Photochem. Photobiol., A, 169 (2005) 279–287.
  146. M. Sleiman, P. Conchon, C. Ferronato, J.M. Chovelon, Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization, Appl. Catal., B, 86 (2009) 159–165.
  147. F.V. Lopes, R.A. Monteiro, A.M. Silva, G.V. Silva, J.L. Faria, A.M. Mendes, R.A. Boaventura, Insights into UV-TiO2 photocatalytic degradation of PCE for air decontamination systems, Chem. Eng. J., 204 (2012) 244–257.
  148. A.K. Boulamanti, C.J. Philippopoulos, Photocatalytic degradation of C5–C7 alkanes in the gas–phase, Atmos. Environ., 43 (2009) 3168–3174.
  149. M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, S. Cohn, W.J. Fisk, Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters, Build. Environ., 47 (2012) 357–367.
  150. M. Li, B. Lu, Q.F. Ke, Y.J. Guo, Y.P. Guo, Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal, J. Hazard. Mater., 333 (2017) 88–98.
  151. H.H. Chun, W.K. Jo, Adsorption and photocatalysis of 2-ethyl-1-hexanol over graphene oxide–TiO2 hybrids post-treated under various thermal conditions, Appl. Catal., B, 180 (2016) 740–750.
  152. A.K. Boulamanti, C.A. Korologos, C.J. Philippopoulos, The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase, Atmos. Environ., 42 (2008) 7844–7850.
  153. J. Van Durme, J. Dewulf, W. Sysmans, C. Leys, H. Van Langenhove, Abatement and degradation pathways of toluene in indoor air by positive corona discharge, Chemosphere, 68 (2007) 1821–1829.
  154. O. Debono, F. Thevenet, P. Gravejat, V. Hequet, C. Raillard, L. Lecoq, N. Locoge, Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination, Appl. Catal., B, 106 (2011) 600–608.
  155. W. Den, C.C. Wang, Enhancement of adsorptive chemical filters via titania photocatalysts to remove vapor-phase toluene and isopropanol, Sep. Purif. Technol., 85 (2012) 101–111.
  156. W.A. Jacoby, D.M. Blake, J.A. Penned, J.E. Boulter, L.M. Vargo, M.C. George, S.K. Dolberg, Heterogeneous photocatalysis for control of volatile organic compounds in indoor air, J. Air Waste Manage. Assoc., 46 (1996) 891–898.
  157. F. Thevenet, C. Guillard, A. Rousseau, Acetylene photocatalytic oxidation using continuous flow reactor: gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation, Chem. Eng. J., 244 (2014) 50–58.
  158. H. Ourrad, F. Thevenet, V. Gaudion, V. Riffault, Limonene photocatalytic oxidation at ppb levels: Assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation, Appl. Catal., B, 168 (2015) 183–194.
  159. L. Yang, Z. Liu, J. Shi, H. Hu, W. Shangguan, Design consideration of photocatalytic oxidation reactors using
    TiO2-coated foam nickels for degrading indoor gaseous formaldehyde, Catal. Today, 126 (2007) 359–368.
  160. W.H. Ching, M. Leung, D.Y. Leung, Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality, Sol Energy, 77 (2004) 129–135.
  161. M. El-Roz, M. Kus, P. Cool, F. Thibault-Starzyk, New operando IR technique to study the photocatalytic activity and selectivity of TiO2 nanotubes in air purification: influence of temperature, UV intensity, and VOC concentration, J. Phys. Chem. C, 116 (2012) 13252–13263.
  162. J. Mo, Y. Zhang, Q. Xu, R. Yang, Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase, J. Hazard. Mater., 168 (2009) 276–281.
  163. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, Visible-light activation of TiO2 photocatalysts: advances in theory and experiments, J. Photochem. Photobiol., C, 25 (2015) 1–29.
  164. S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, Z. Zou, Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property, ACS Catal., 3 (2013) 912–919.
  165. N. Abbas, M. Hussain, N. Russo, G. Saracco, Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs, Chem. Eng. J., 175 (2011) 330–340.
  166. T. Yan, J. Long, X. Shi, D. Wang, Z. Li, X. Wang, Efficient photocatalytic degradation of volatile organic compounds by porous indium hydroxide nanocrystals, Environ. Sci. Technol., 44 (2010) 1380–1385.
  167. F. Petronella, A. Truppi, M. Dell’Edera, A. Agostiano, M.L. Curri, R. Comparelli, Scalable synthesis of mesoporous TiO2 for environmental photocatalytic applications, Materials, 12 (2019) 1853.
  168. S. Apollo, M.S. Onyongo, A. Ochieng, UV/H2O2/TiO2/zeolite hybrid system for treatment of molasses wastewater, Iran. J. Chem. Chem. Eng., 33 (2014) 107–117.
  169. A. Fujishima, X. Zhang, Titanium dioxide photocatalysis: present situation and future approaches, C.R. Chim., 9 (2006) 750–760.
  170. G. Song, C. Luo, Q. Fu, C. Pan, Hydrothermal synthesis of the novel rutile-mixed anatase TiO2 nanosheets with dominant
  171. facets for high photocatalytic activity, RSC Adv., 6 (2016) 84035–84041.
  172. A.A. Assadi, A. Bouzaza, D. Wolbert, P. Petit, Isovaleraldehyde elimination by UV/TiO2 photocatalysis: comparative study of the process at different reactors configurations and scales, Environ. Sci. Pollut. Res., 21 (2014) 11178–11188.
  173. A.A. Assadi, J. Palau, A. Bouzaza, D. Wolbert, Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: effect of different operating parameters and chemical degradation pathway, Chem. Eng. Res. Des., 91 (2013) 1307–1316.
  174. A.A. Assadi, A. Bouzaza, D. Wolbert, Study of synergetic effect by surface discharge plasma/TiO2 combination for indoor air treatment: sequential and continuous configurations at pilot scale, J. Photochem. Photobiol., A, 310 (2015) 148–154.
  175. A.A. Assadi, A. Bouzaza, I. Soutrel, P. Petit, K. Medimagh, D. Wolbert, A study of pollution removal in exhaust gases from animal quartering centers by combining photocatalysis with surface discharge plasma: from pilot to industrial scale, Chem. Eng. Process. Process Intensif., 111 (2017) 1–6.
  176. A.A. Assadi, A. Bouzaza, D. Wolbert, Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma, Chem. Eng. Res. Des., 106 (2016) 308–314.
  177. L. Zou, Y. Luo, M. Hooper, E, Hu, Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst, Chem. Eng. Process. Process Intensif., 45 (2006) 959–964.
  178. X. Yang, J.A. Koziel, Y. Laor, W. Zhu, J.H. van Leeuwen, W.S. Jenks, R. Armon, VOC removal from manure gaseous emissions with UV photolysis and UV-TiO2 photocatalysis, Catalysts, 10 (2020) 607, doi: 10.3390/catal10060607.
  179. R. Acharya, K. Parida, A review on TiO2/g-C3N4 visible-lightresponsive photocatalysts for sustainable energy generation and environmental remediation, J. Environ. Chem. Eng., 8 (2020) 103896, doi: 10.1016/j.jece.2020.103896.
  180. G. Xiao, S. Xu, P. Li, H. Su, Visible-light-driven activity and synergistic mechanism of TiO2@g-C3N4 heterostructured photocatalysts fabricated through a facile and green procedure for various toxic pollutants removal, Nanotechnology, 29 (2018) 315601.
  181. S. Zhang, J. Li, M. Zeng, G. Zhao, J. Xu, W. Hu, X. Wang, In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance, ACS Appl. Mater. Interfaces, 5 (2013) 12735–12743.
  182. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts, J. Phys. Chem. C, 111 (2007) 18288–18293.
  183. K.I. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas, J. Hazard. Mater., 260 (2013) 475–482.
  184. X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, X. Ou, Fabrication of V2O5/g-C3N4 heterojunction composites and its enhanced visible light photocatalytic performance for degradation of gaseous ortho-dichlorobenzene, J. Taiwan Inst. Chem. Eng., 93 (2018) 158–165.
  185. Y. Li, J. Wang, Y. Yang, Y. Zhang, D. He, Q. An, G. Cao, Seedinduced growing various TiO2 nanostructures on
    g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light, J. Hazard. Mater., 292 (2015) 79–89.
  186. R. Sun, Q. Shi, M. Zhang, L. Xie, J. Chen, X. Yang, W. Zhao, Enhanced photocatalytic oxidation of toluene with a corallike direct Z-scheme BiVO4/g-C3N4 photocatalyst, J. Alloys Compd., 714 (2017) 619–626.
  187. W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, J. Mater. Chem. A, 3 (2015) 19936–19947.
  188. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties, J. Am. Chem. Soc., 133 (2011) 6490–6492.
  189. Y. Shen, Z. Zhu, X. Wang, J. Gong, Y. Zhang, Synthesis of Z-scheme g-C3N4/Ag/Ag3PO4 composite for enhanced photocatalytic degradation of phenol and selective oxidation of gaseous isopropanol, Mater. Res. Bull., 107 (2018) 407–415.
  190. Y. Li, X. Wu, J. Li, K. Wang, G. Zhang, Z-scheme g-C3N4@ CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs, Appl. Catal., B, 229 (2018) 218–226.
  191. Y. Chen, W. Huang, D. He, Y. Situ, H. Huang, Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation, ACS Appl. Mater. Interfaces, 6 (2014) 14405–14414.
  192. Y. Gong, X. Quan, H. Yu, H., S. Chen, Synthesis of Z-scheme Ag2CrO4/Ag/g-C3N4 composite with enhanced visible-light photocatalytic activity for 2,4-dichlorophenol degradation, Appl. Catal., B, 219 (2017) 439–449.
  193. H.T. Ren, S.Y. Jia, Y. Wu, S.H. Wu, T.H. Zhang, X. Han, Improved photochemical reactivities of Ag2O/g-C3N4 in phenol degradation under UV and visible light, Ind. Eng. Chem. Res., 53 (2014) 17645–17653.
  194. R. He, J. Zhou, H. Fu, S. Zhang, C. Jiang, Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity, Appl. Surf. Sci., 430 (2018) 273–282.
  195. X. Zou, C. Ran, Y. Dong, Z. Chen, D. Dong, D. Hu, Y. Cui, Synthesis and characterization of BiPO4/g-C3N4 nanocomposites with significantly enhanced visible-light photocatalytic activity for benzene degradation, RSC Adv., 6 (2016) 20664–20670.
  196. V.D. Dao, T.D. Nguyen, N. Van Noi, N.M. Ngoc, T.D. Pham, P. Van Quan, H.T. Trang, Superior visible light photocatalytic activity of g-C3N4/NiWO4 direct Z system for degradation of gaseous toluene, J. Solid State Chem., 272 (2019) 62–68.
  197. M. Zhang, X. Liu, X. Zeng, M. Wang, J. Shen, R. Liu, Photocatalytic degradation of toluene by In2S3/g-C3N4 heterojunctions, Chem. Phys. Lett., 7 (2020) 100049, doi: 10.1016/j.cpletx.2020.100049.
  198. R. He, K. Cheng, Z. Wei, S. Zhang, D Xu, Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst, Appl. Surf. Sci., 465 (2019) 964–972.
  199. S. Weon, F. He, W. Choi, Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation, Environ. Sci. Nano, 6 (2019) 3185–3214.