References

  1. P. Dong, G. Hou, X. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications, Environ. Sci. Nano, 4 (2017) 539–557.
  2. T. Zadi, M. Aziz, N. Nasrallah, A. Bouzaza, R. Maachi, D. Wolbert, S. Rtimi, A.A. Assadi, Indoor air treatment of refrigerated food chambers with synergetic association between cold plasma and photocatalysis: process performance and photocatalytic poisoning, Chem. Eng. J., 382 (2020) 122951, doi: 10.1016/j.cej.2019.122951.
  3. M.H. Geesi, O. Ouerghi, A. Elsanousi, A. Kaiba, Y. Riadi, Ultrasound-assisted preparation of Cu-doped TiO2 nanoparticles as a nanocatalyst for sonochemical synthesis of pyridopyrimidines, Polycyclic Aromat. Compd., (2020), doi: 10.1080/10406638.2020.1716029.
  4. D. Tekin, D. Birhan, H. Kiziltas, Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/ polymer composites, Mater. Chem. Phys., 251 (2020) 123067, doi: 10.1016/j.matchemphys.2020.123067.
  5. X. Qu, Y. Yi, F. Qiao, M. Liu, X. Wang, R. Yang, H. Meng, L. Shi, F. Du, TiO2/BiOI/CQDs: enhanced photocatalytic properties under visible-light irradiation, Ceram. Int., 44 (2018) 1348–1355.
  6. A. Meng, L. Zhang, B. Cheng, T. Yu, TiO2–MnOX–Pt hybrid multiheterojunction film photocatalyst with enhanced photocatalytic CO2-reduction activity, ACS Appl. Mater. Interfaces, 11 (2019) 5581–5589.
  7. J. Huang, L. Dou, J. Li, J. Zhong, M. Li, T. Wang, Excellent visible light responsive photocatalytic behavior of
    N-doped TiO2 toward decontamination of organic pollutants, J. Hazard. Mater. 403 (2021) 123857,
    doi: 10.1016/j.jhazmat.2020.123857.
  8. X. Cheng, Y. Shang, Y. Cui, R. Shi, Y. Zhu, P. Yang, Enhanced photoelectrochemical and photocatalytic properties of anatase-TiO2(B) nanobelts decorated with CdS nanoparticles, Solid State Sci., 99 (2020) 106075,
    doi: 10.1016/j. solidstatesciences.2019.106075.
  9. J. Huang, H. Liu, J. Li, J. Zhong, T. Wang, J. Li, M. Li, Photocatalytic activity of TiO2 prepared by different solvents through a solvothermal approach, Solid State Sci., 98 (2019) 106024,
    doi: 10.1016/j.solidstatesciences.2019.106024.
  10. W. Hua, F. Dong, J. Zhang, M. Liu, H. He, Y. Wu, D. Yang, H. Deng, Differently ordered TiO2 nanoarrays regulated by solvent polarity, and their photocatalytic performances, Appl. Surf. Sci., 442 (2018) 298–307.
  11. E.I. Naik, H.S.B. Naik, R. Viswanath, I.K. Suresh Gowda, M.C. Prabhakara, Bright red luminescence emission of macroporous honeycomb-like Eu3+ ion-doped ZnO nanoparticles developed by gel-combustion technique, Appl. Surf. Sci., 5 (2020) 863, doi:10.1007/s42452-020-2639-x.
  12. K. Abdellah, O. Oussama, G.H. Mohammed, E. Ammar, B. Afif, D.B. Oussamaehbi, Characterization and catalytic performance of Ni-doped TiO2 as a potential heterogeneous nanocatalyst for the preparation of substituted pyridopyrimidines, J. Mol. Struct., 1203 (2020) 127376, doi: 10.1016/j.molstruc.2019.127376.
  13. X. Yu, J. Xie, H. Dong, Q. Liu, Y. Li, Effects of oxygen defects on electronic band structures and dopant migration in Sn-doped TiO2 by density functional studies, Chem. Phys. Lett., 754 (2020) 137732,
    doi: 10.1016/j.cplett.2020.137732.
  14. V. Sarunas, M. Arturs, L. Martynas, M. Darius, A. Andris, Black carbon-doped TiO2 films: synthesis, characterization and photocatalysis, J. Photochem. Photobiol., A, 382 (2019) 111941,
    doi: 10.1016/j.jphotochem.2019.111941.
  15. N. Sharotri, D. Sharma, D. Sud, Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants, J. Mater. Res. Technol., 5 (2019) 3995–4009.
  16. L. Tian, L. Xiang, X. Shen, Q. Li, S. Ge, B. Liu, L. Jie, Visible light enhanced Fe-I-TiO2 photocatalysts for the degradation of gaseous benzene, Atmos. Pollut. Res., 11 (2020) 179–185.
  17. S. Abbad, K. Guergouri, S. Gazaout, S. Djebabra, A. Zertal, R. Barille, M. Zaabat, Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol–gel route, J. Environ. Chem. Eng., 8 (2020) 103718, doi: 10.1016/j.jece.2020.103718.
  18. S. Wang, J. Wang, W. Liu, Effect of F, V and Mn co-doping on the catalytic performance of TiO2-pillared bentonite in the photocatalytic denitration, J. Fuel Chem. Technol., 48 (2020) 1131–1139.
  19. F. Alcaide, R.V. Genova, G. Álvarez, H.-J. Grande, Ó. Miguel, P.L. Cabot, Platinum-catalyzed Nb-doped TiO2 and Nb-doped TiO2 nanotubes for hydrogen generation in proton exchange membrane water electrolyzers, Int. J. Hydrogen Energy, 40 (2020) 20605–20619.
  20. M.T. Ramesan, T. Sampreeth, In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications, J. Mater. Sci.: Mater. Electron., 29 (2017) 4301–4311.
  21. T. Xia, X. Chen, Revealing the structural properties of hydrogenated black TiO2 nanocrystals, J. Mater. Chem.,
    1 (2013) 2983–2989.
  22. F. Mokhtari, N. Tahmasebi, Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of Rhodamine B under visible light, J. Phys. Chem. Solids, 149 (2020) 109804,
    doi: 10.1016/j.jpcs.2020.109804.
  23. J. Zhong, J. Chen, Q. Yang, C. Hu, J. Li, R. Duan, Remarkably enhanced photoinduced charge separation rate of Bi2WO6 by Cu2+ doping, Appl. Phys. A, 124 (2018) 583–589.
  24. A.K. Yadav, S.H. Maidul, D.K. Shukla, D.M. Phase, S.N. Jha, D. Bhattacharyy, Local structural investigations of
    Fe-doped TiO2 amorphous thin films, Thin Solid Films, 716 (2020) 138435, doi: 10.1016/j.tsf.2020.138435.
  25. A. Dziedzic, W. Bochnowski, S. Adamiak, L. Szyller, J. Cebulski, I. Virt, M. Kus-Liśkiewicz, M. Marzec, P. Potera,
    A. Żaczek, B. Zdeb, Structure and antibacterial properties of Ag and N doped titanium dioxide coatings containing Ti2.85O4N phase, prepared by magnetron sputtering and annealing, Surf. Coat. Technol., 393 (2020) 125844, doi: 10.1016/j.surfcoat.2020.125844.
  26. D.K. Reshma, M.K. Rajbhar, A. Ashina, E. Ramasamy, S. Mallick, T.N. Rao, G. Veerappan, A facile co-precipitation method for synthesis of Zn doped BaSnO3 nanoparticles for photovoltaic application, Mater. Chem. Phys., 258 (2021) 123939, doi: 10.1016/j.matchemphys.2020.123939.
  27. N.F. Andrade, L.E. Nascimento, M. Correa, F. Bohn, M.R.D. Bomio, F.V. Mott, Characterization and photocatalytic application of Ce4p, Co2p, Mn2p and Ni2p doped Fe3O4 magnetic nanoparticles obtained by the co-precipitation method, Mater. Chem. Phys., 242 (2020) 122489.
  28. J. Zhong, J. Li, X. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-doped ZnO, Curr. Appl. Phys., 12 (2012) 998–1001.
  29. E.I. Naik, H.S.B. Naik, R. Viswanath, B.R. Kirthan, M.C. Prabhakara, Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol–gel method, Chem. Data Collect., 29 (2020) 100505, doi: 10.1016/j.cdc.2020.100505.
  30. T. Hussain, M. Junaid, H.A. Qayyum, Preparation of Ba-doped SrTiO3 photocatalyst by sol–gel method for hydrogen generation, Chem. Phys. Lett., 754 (2020) 137741, doi: 10.1016/j. cplett.2020.137741.
  31. M. Sankar, M. Jothibas, A. Muthuvel, A. Rajeshwari, S. Johnson, Structural, optical and photocatalytic degradation of organic dyes by sol gel prepared Ni doped CdS nanoparticles, Surf. Interfaces, 21 (2020) 100775, doi: 10.1016/j.surfin.2020.100775.
  32. M.K.A. Mohammed, Sol–gel synthesis of Au-doped TiO2 supported SWCNT nanohybrid with visible-light-driven photocatalytic for high degradation performance toward methylene blue dye, Optik, 223 (2020) 165607, doi: 10.1016/j. ijleo.2020.165607.
  33. J. Zhong, J. Li, F. Feng, S. Huang, J. Zeng, CTAB-assisted fabrication of TiO2 with improved photocatalytic performance, Mater. Lett., 100 (2013) 195–197.
  34. J. Huang, H. Liu, J. Zhong, J. Li, Enhanced simulated sunlightdriven photocatalytic performance of SnWO4 prepared in the presence of cetyltrimethylammonium bromide, Environ. Prog. Sustainable Energy, 39 (2020) e13314, doi: 10.1002/ep.13314.
  35. J. Huang, H. Liu, J. Chen, J. Zhong, J. Li, R. Duan, In-situ loading of (BiO)2CO3 on g-C3N4 with promoted solar-driven photocatalytic performance originated from a direct Z-scheme mechanism, Mater. Sci. Semicond. Process., 82 (2018) 97–103.
  36. P. Chen, F. Wang, Z. Chen, Q. Zhang, Y. Su, L. Shen, K. Yao, Y. Liu, Z. Cai, W. Lv, G. Liu, Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlightdriven TiO2/carbon dots photocatalyst: the significant roles of reactive oxygen species, Appl. Catal., B, 204 (2017) 250–259.
  37. G. Li, X. Nie, Y. Gao, T. An, Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiationimplications of persistent toxic intermediates, Appl. Catal., B, 180 (2016) 726–732.
  38. D. Komaraiah, E. Radha, J. Sivakumar, M.V. Ramana Reddy, R. Sayanna, Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films, Opt. Mater., 108 (2020) 110401,
    doi: 10.1016/j.optmat.2020.110401.
  39. J. Chen, Q. Yang, J. Zhong, J. Li, C. Burda, Microwave-assisted preparation of flower-like C60/BiOBr with significantly enhanced visible-light photocatalytic performance, Appl. Surf. Sci., 540 (2021) 148340, doi: 10.1016/j.apsusc.2020. 148340.
  40. L. Dou, X. Jin, J. Chen, J. Zhong, J. Li, Y. Zeng, R. Duan, One-pot solvothermal fabrication of S-scheme
    OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants, Appl. Surf. Sci. 527 (2020) 146775, doi: 10.1016/j. apsusc.2020.146775.
  41. S. Lei, C. Yang, H. Liao, J. Chen, J. Zhong, J. Li, Enhanced photocatalytic activity of N134 carbon black modified Bi2WO6 benefited from ample oxygen vacancies and boosted separation of photoexcited carriers, Mater. Res. Bull., 133 (2021) 111075, doi: 10.1016/j.materresbull.2020.111075.
  42. L. Dou, Y. Xiang, J. Zhong, J. Li, S. Huang, Ionic liquidassisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB, Mater. Lett., 261 (2020) 127117,
    doi: 10.1016/j.matlet.2019.127117.
  43. M. Afzali, A. Mostafavi, T. Shamspur, Performance enhancement of perovskite solar cells by rhenium doping in nano-TiO2 compact layer, Org. Electron., 86 (2020) 105907, doi: 10.1016/j.orgel.2020.105907.
  44. R.A.R. Monteiro, S.M. Miranda, C. Rodrigues-Silva, J.L. Faria, A.M.T. Silva, R.A.R. Boaventura, Vítor J.P. Vilar, Gas-phase oxidation of n-decane and PCE by photocatalysis using an annular photoreactor packed with a monolithic catalytic bed coated with P25 and PC500, Appl. Catal., B, 162 (2015) 66–74.
  45. V. Donchev, K. Kirilov, T. Ivanov, K. Germanova, Surface photovoltage phase spectroscopy-a handy tool for characterization of bulk semiconductors and nanostructures, Mater. Sci. Eng., B, 129 (2006) 186–192.
  46. H. Liu, C. Yang, J. Huang, Z. Deng, J. Zhong, J. Li, R. Duan, Carbon black decorated BiOCl with largely enhanced photocatalytic activity toward removal of RhB, Solid State Sci., 97 (2019) 105989,
    doi: 10.1016/j.solidstatesciences.2019.105989.
  47. J. Cao, X. Li, H. Lin, B. Xu, S. Chen, Q. Guan, Surface acid etching of (BiO)2CO3 to construct (BiO)2CO3/BiOX
    (X = Cl, Br, I) heterostructure for methyl orange removal under visible light, Appl. Surf. Sci., 266 (2013) 294–299.
  48. T. Cao, Y. Li, C. Wang, Z. Zhang, M. Zhang, C. Shao, Y. Liu, Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures: in situ fabrication and high visible light photocatalytic activity, J. Mater. Chem.,
    21 (2011) 6922–6927.
  49. D. Hou, X. Hu, P. Hu, W. Zhang, M. Zhang, Y. Huang, Bi4Ti3O12 nanofibers-BiOI nanosheets p-n junction: facile synthesis and enhanced visible-light photocatalytic activity, Nanoscale, 5 (2013) 9764–9772.
  50. H. Li, J. Shi, K. Zhao, L. Zhang, Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light, Nanoscale, 6 (2014) 14168–14173.
  51. P. Wang, L. Ge, M. Li, W.P. Li, L. Li, Y.H. Wang, J.H. Yu, Photoelectrochemical sensor based on molecularly imprinted polymer-coated TiO2 nanotubes for lindane specific recognition and detection, J. Inorg. Organomet. Polym. Mater., 23 (2013) 703–711.
  52. D. Ma, J. Zhong, R. Peng, J. Li, R. Duan, Effective photoinduced charge separation and photocatalytic activity of hierarchical microsphere-like C60/BiOCl, Appl. Surf. Sci., 465 (2019) 249–258.
  53. M. Paszkiewicza, J. Łuczakb, W. Lisowskic, P. Patyka, A. Zaleska-Medynska, The ILs-assisted solvothermal synthesis of TiO2 spheres: the effect of ionic liquids on morphology and photoactivity of TiO2, Appl. Catal., B, 184 (2016) 223–237.
  54. M.A. Henderson, A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 66 (2011) 185–297.
  55. H. Einaga, S. Futamura, T. Ibusuki, Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiation TiO2 catalyst, Appl. Catal., B, 38 (2002) 215–225.
  56. Y. Liu, R. Wang, Z. Yang, Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancyrich zinc oxide hybrid photocatalysts, Chin. J. Catal., 12 (2015) 2135–2144.
  57. H. Li, W. Li, S. Gu, Forming oxygen vacancies inside in lutetium-doped Bi2MoO6 nanosheets for enhanced visiblelight photocatalytic activity, J. Mol. Catal., 433 (2017) 301–312.
  58. S. Wang, D. Chen, F. Niu, Hydrogenation-induced surface oxygen vacancies in BiFeO3 nanoparticles for enhanced visible light photocatalytic performance, J. Alloys Compd., 688 (2016) 399–406.