References
- C.B. Godiya, L.A.M. Ruotolo, W. Cai, Functional biobased
hydrogels for the removal of aqueous hazardous pollutants:
current status, challenges, and future perspectives, J. Mater.
Chem. A, 8 (2020) 21585–21612.
- L. Järup, Hazards of heavy metal contamination, Br. Med. Bull.,
68 (2003) 167–182.
- P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy
metals toxicity and the environment, Mol. Clin. Environ.
Toxicol., 101 (2012) 133–164.
- A. Heidari, H. Younesi, Z. Mehraban, Removal of Ni(II),
Cd(II), and Pb(II) from a ternary aqueous solution by amino
functionalized mesoporous and nano mesoporous silica, Chem.
Eng. J., 153 (2009) 70–79.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- C. Fan, K. Li, J. Li, D. Ying, Y. Wang, J. Jia, Comparative
and competitive adsorption of Pb(II) and Cu(II) using
tetraethylenepentamine modified chitosan/CoFe2O4 particles,
J. Hazard. Mater., 326 (2017) 211–220.
- S. Muthusaravanan, N. Sivarajasekar, J. Vivek, T. Paramasivan,
M. Naushad, J. Prakashmaran, V. Gayathri, O.K. Al-Duaij,
Phytoremediation of heavy metals: mechanisms, methods and
enhancements, Environ. Chem. Lett., 16 (2018) 1339–1359.
- G. Sharma, D. Pathania, M. Naushad, N. Kothiyal, Fabrication,
characterization and antimicrobial activity of polyaniline
Th(IV) tungstomolybdophosphate nanocomposite material:
efficient removal of toxic metal ions from water, Chem. Eng. J.,
251 (2014) 413–421.
- A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova,
S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy
metals on conventional and nanostructured materials for
wastewater treatment purposes: a review, Ecotoxicol. Environ.
Saf., 148 (2018) 702–712.
- T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II)
and Pb(II) from aqueous solutions on activated alumina,
J. Colloid Interface Sci., 333 (2009) 14–26.
- A. Rahmani, H.Z. Mousavi, M. Fazli, Effect of nanostructure
alumina on adsorption of heavy metals, Desalination,
253 (2010) 94–100.
- Y.-H. Li, S. Wang, J. Wei, X. Zhang, C. Xu, Z. Luan, D. Wu,
B. Wei, Lead adsorption on carbon nanotubes, Chem. Phys.
Lett., 357 (2002) 263–266.
- M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy
metal ions from water using carbon nanotube sheets, J. Hazard.
Mater., 185 (2011) 140–147.
- Z. Huang, X. Zheng, W. Lv, M. Wang, Q. Yang, F. Kang,
Adsorption of lead(II) ions from aqueous solution on lowtemperature
exfoliated graphene nanosheets, Langmuir,
27 (2011) 7558–7562.
- Z. Han, Z. Tang, S. Shen, B. Zhao, G. Zheng, J. Yang,
Strengthening of graphene aerogels with tunable density and
high adsorption capacity towards Pb2+, Sci. Rep., 4 (2014) 5025,
doi: 10.1038/srep05025.
- J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of
lead(II) by adsorption using treated granular activated carbon:
batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
- M. Momcilovic, M. Purenovic, A. Bojic, A.R. Zarubica,
M.S. Ranđelovic, Removal of lead(II) ions from aqueous
solutions by adsorption onto pine cone activated carbon,
Desalination, 276 (2011) 53–59.
- S. Wang, T. Terdkiatburana, M. Tadé, Adsorption of Cu(II),
Pb(II) and humic acid on natural zeolite tuff in single and
binary systems, Sep. Purif. Technol., 62 (2008) 64–70.
- X. Wang, D. Shao, G. Hou, X. Wang, A. Alsaedi, B. Ahmad,
Uptake of Pb(II) and U(VI) ions from aqueous solutions by the
ZSM-5 zeolite, J. Mol. Liq., 207 (2015) 338–342.
- M.J.K. Ahmed, M. Ahmaruzzaman, A review on potential usage
of industrial waste materials for binding heavy metal ions from
aqueous solutions, J. Water Process Eng., 10 (2016) 39–47.
- S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals
uptake from contaminated water: a review, J. Hazard. Mater.,
97 (2003) 219–243.
- Z. Yao, X. Ji, P. Sarker, J. Tang, L. Ge, M. Xia, Y. Xi,
A comprehensive review on the applications of coal fly ash,
Earth-Sci. Rev., 141 (2015) 105–121.
- J. Ding, S. Ma, S. Shen, Z. Xie, S. Zheng, Y. Zhang, Research and
industrialization progress of recovering alumina from fly ash: a
concise review, Waste Manage., 60 (2017) 375–387.
- S. Dai, L. Zhao, S. Peng, C.-L. Chou, X. Wang, Y. Zhang, D. Li,
Y. Sun, Abundances and distribution of minerals and elements
in high-alumina coal fly ash from the Jungar Power Plant, Inner
Mongolia, China, Int. J. Coal Geol., 81 (2010) 320–332.
- L. Qi, Y. Yuan, Characteristics and the behavior in electrostatic
precipitators of high-alumina coal fly ash from the Jungar
power plant, Inner Mongolia, China, J. Hazard. Mater.,
192 (2011) 222–225.
- Q. Yang, S. Ma, S. Zheng, R. Zhang, Recovery of alumina from
circulating fluidized bed combustion Al-rich fly ash using mild
hydrochemical process, Trans. Nonferrous Met. Soc. China,
24 (2014) 1187–1195.
- J. Ding, S. Ma, S. Zheng, Y. Zhang, Z. Xie, S. Shen, Z. Liu, Study
of extracting alumina from high-alumina PC fly ash by a hydrochemical
process, Hydrometallurgy, 161 (2016) 58–64.
- Z. Wang, S. Ma, Z. Tang, X. Wang, S. Zheng, Effects of particle
size and coating on decomposition of alumina-extracted
residue from high-alumina fly ash, J. Hazard. Mater., 308 (2016)
253–263.
- Z. Wang, S. Zheng, S. Ma, J. Ding, X. Wang, Recovery of sodium
from alumina-extracted fly ash using concentrated sodium
carbonate solution, J. Min. Metall., 54 (2018) 225–232.
- N.J. Coleman, Interactions of Cd(II) with waste-derived 11 Å
tobermorite s, Sep. Purif. Technol., 48 (2006) 62–70.
- H. Luo, D. He, W. Zhu, Y. Wu, Z. Chen, E.-H. Yang, Humic
acid-induced formation of tobermorite upon hydrothermal
treatment with municipal solid waste incineration bottom ash
and its application for efficient removal of Cu(II) ions, Waste
Manage., 84 (2019) 83–90.
- Z. Zhao, J. Wei, F. Li, X. Qu, L. Shi, H. Zhang, Q. Yu, Synthesis,
Characterization and hexavalent chromium adsorption
characteristics of aluminum- and sucrose-incorporated
tobermorite, Materials, 10 (2017) 597, doi: 10.3390/ma10060597.
- T. Tsutsumi, S. Nishimoto, Y. Kameshima, M. Miyake,
Hydrothermal preparation of tobermorite from blast furnace
slag for Cs+ and Sr2+ sorption, J. Hazard. Mater., 266 (2014)
174–181.
- Z. Wang, S. Ma, S. Zheng, X. Wang, Incorporation of Al and Na
in hydrothermally synthesized tobermorite, J. Am. Ceram. Soc.,
100 (2017) 792–799.
- S. Azizian, Kinetic models of sorption: a theoretical analysis,
J. Colloid Interface Sci., 276 (2004) 47–52.
- Y. Ho, Review of second-order models for adsorption systems,
J. Hazard. Mater., 136 (2006) 681–689.
- C.A. Coles, R.N. Yong, Aspects of kaolinite characterization and
retention of Pb and Cd, Appl. Clay Sci., 22 (2002) 39–45.
- C.A. Christophi, L. Axe, Competition of Cd, Cu, and Pb
adsorption on goethite, J. Environ. Eng., 126 (2000) 66–74.
- T. Wang, W. Liu, L. Xiong, N. Xu, J. Ni, Influence of pH, ionic
strength and humic acid on competitive adsorption of Pb(II),
Cd(II) and Cr(III) onto titanate nanotubes, Chem. Eng. J.,
215 (2013) 366–374.
- X.S. Wang, H.H. Miao, W. He, H.L. Shen, Competitive
adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue
derived black carbon, J. Chem. Eng. Data, 56 (2011) 444–449.
- M.R. Awual, M.M. Hasan, A ligand based innovative composite
material for selective lead(II) capturing from wastewater, J. Mol.
Liq., 294 (2019) 111679, doi: 10.1016/j.molliq.2019.111679.
- M. Naushad, Z. ALOthman, M.R. Awual, M.M. Alam,
G. Eldesoky, Adsorption kinetics, isotherms, and
thermodynamic studies for the adsorption of Pb2+ and Hg2+
metal ions from aqueous medium using Ti(IV) iodovanadate
cation exchanger, Ionics, 21 (2015) 2237–2245.
- I. Alinnor, Adsorption of heavy metal ions from aqueous
solution by fly ash, Fuel, 86 (2007) 853–857.
- S. Wang, T. Terdkiatburana, M. Tadé, Single and co-adsorption
of heavy metals and humic acid on fly ash, Sep. Purif. Technol.,
58 (2008) 353–358.
- M. Visa, Synthesis and characterization of new zeolite materials
obtained from fly ash for heavy metals removal in advanced
wastewater treatment, Powder Technol., 294 (2016) 338–347.
- K. He, Y. Chen, Z. Tang, Y. Hu, Removal of heavy metal ions
from aqueous solution by zeolite synthesized from fly ash,
Environ. Sci. Pollut. Res., 23 (2016) 2778–2788.
- N.J. Coleman, D.S. Brassington, Synthesis of Al-substituted 11
Å tobermorite from newsprint recycling residue: a feasibility
study, Mater. Res. Bull., 38 (2003) 485–497.
- I. Kula, M. Uğurlu, H. Karaoğlu, A. Celik, Adsorption of Cd(II)
ions from aqueous solutions using activated carbon prepared
from olive stone by ZnCl2 activation, Bioresour. Technol.,
99 (2008) 492–501.
- A. Papandreou, C. Stournaras, D. Panias, Copper and cadmium
adsorption on pellets made from fired coal fly ash, J. Hazard.
Mater., 148 (2007) 538–547.
- X. Huang, H. Zhao, G. Zhang, J. Li, Y. Yang, P. Ji, Potential of
removing Cd(II) and Pb(II) from contaminated water using
a newly modified fly ash, Chemosphere, 242 (2020) 125148,
doi: 10.1016/j.chemosphere.2019.125148.
- T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran,
J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr,
Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and
fixed-bed column studies, Chem. Eng. J., 270 (2015) 393–404.
- G. Sharma, M. Naushad, Adsorptive removal of noxious
cadmium ions from aqueous medium using activated carbon/
zirconium oxide composite: isotherm and kinetic modelling,
J. Mol. Liq., 310 (2020) 113025,
doi: 10.1016/j.molliq.2020.113025.
- X. Guo, H. Shi, Microstructure and heavy metal adsorption
mechanisms of hydrothermally synthesized Al-substituted
tobermorite, Mater. Struct., 50 (2017) 245, doi: 10.1617/
s11527-017-1100-0.
- V.G.R. Chada, D.B. Hausner, D.R. Strongin, A.A. Rouff,
R.J. Reeder, Divalent Cd and Pb uptake on calcite {1014}
cleavage faces: an XPS and AFM study, J. Colloid Interface Sci.,
288 (2005) 350–360.
- H. Abdel-Samad, P.R. Watson, An XPS study of the adsorption
of lead on goethite (α-FeOOH), Appl. Surf. Sci., 136 (1998)
46–54.
- T. Yoshida, T. Yamaguchi, Y. Iida, S. Nakayama, XPS study of
Pb(II) adsorption on γ-Al2O3 surface at high pH conditions,
J. Nucl. Sci. Technol., 40 (2003) 672–678.