References
- N.S. Satarkar, J.Z. Hilt, Hydrogel nanocomposites as remotecontrolled
biomaterials, Acta Biomater.,
4 (2008) 11–16.
- L. Joseph, B.-M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of
heavy metals from water sources in the developing world using
low-cost materials: a review, Chemosphere, 229 (2019) 142–159.
- S. Babel, T.A. Kurniawan, Cr(VI) removal from synthetic
wastewater using coconut shell charcoal and commercial
activated carbon modified with oxidizing agents and/or
chitosan, Chemosphere, 54 (2004) 951–967.
- P. Dhiman, S. Sharma, A. Kumar, M. Shekh, G. Sharma, Mu.
Naushad, Rapid visible and solar photocatalytic Cr(VI) reduction
and electrochemical sensing of dopamine using solution
combustion synthesized ZnO–Fe2O3 nano heterojunctions:
mechanism elucidation, Ceram. Int., 46 (2020) 12255–12268.
- Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison
of heavy metal removals from aqueous solutions by chemical
precipitation and characteristics of precipitates, J. Water Process
Eng., 26 (2018) 289–300.
- J. Wang, X. Liu, Forward osmosis technology for water
treatment: recent advances and future perspectives, J. Cleaner
Prod., 280 (2020) 124354, doi: 10.1016/j.jclepro.2020.124354.
- N. Abdullah, M.H. Tajuddin, N. Yusof, Chapter 10 – Forward
Osmosis (FO) for Removal of Heavy Metals, A. Ahsan,
A.F. Ismail, Eds., Nanotechnology in Water and Wastewater
Treatment: Theory and Applications Micro and Nano
Technologies, Elsevier, Amsterdam, The Netherlands, 2019,
pp. 177–204.
- J.P. Bezzina, L.R. Ruder, R. Dawson, M.D. Ogden, Ion exchange
removal of Cu(II), Fe(II), Pb(II) and Zn(II) from acid extracted
sewage sludge – resin screening in weak acid media, Water
Res., 158 (2019) 257–267.
- S. Haas, V. Boschi, A. Grannas, Metal sorption studies biased by
filtration of insoluble metal oxides and hydroxides, Sci. Total
Environ., 646 (2019) 1433–1439.
- T.-K. Tran, K.-F. Chiu, C.-Y. Lin, H.-J. Leu, Electrochemical
treatment of wastewater: selectivity of the heavy metals removal
process, Int. J. Hydrogen Energy, 42 (2017) 27741–27748.
- G. Sharma, A. Kumar, S. Sharma, A.H. Al-Muhtaseb,
Mu. Naushad, A.A. Ghfar, T. Ahamad, F.J. Stadler, Fabrication
and characterization of novel Fe0@guar gum-crosslinked-soya
lecithin nanocomposite hydrogel for photocatalytic degradation
of methyl violet dye, Sep. Purif. Technol., 211 (2019) 895–908.
- A. Kumar, G. Sharma, Mu. Naushad, A.H. Al-Muhtaseb,
A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and
biomaterials-based hybrid photocatalysts for environmental
detoxification: a review, Chem. Eng. J., 382 (2020) 122937,
doi: 10.1016/j.cej.2019.122937.
- E.J. Kim, K. Baek, Selective recovery of ferrous oxalate and
removal of arsenic and other metals from soil-washing
wastewater using a reduction reaction, J. Cleaner Prod.,
221 (2019) 635–643.
- R. Shahrokhi-Shahraki, C. Benally, M.G. El-Din, J. Park, High
efficiency removal of heavy metals using tire-derived activated
carbon vs commercial activated carbon: insights into the
adsorption mechanisms, Chemosphere, 264 (2021) 128455,
doi: 10.1016/j.chemosphere.2020.128455.
- A.F. El-Kafrawy, S.M. El-Saeed, R.K. Farag, H.A. Al-Aidy
El-Saied, M. El-Sayed Abdel-Raouf, Adsorbents based on
natural polymers for removal of some heavy metals from
aqueous solution, Egypt. J. Pet., 26 (2017) 23–32.
- S. Chowdhury, P. Saha, Sea shell powder as a new adsorbent
to remove Basic Green 4 (Malachite Green) from aqueous
solutions: equilibrium, kinetic and thermodynamic studies,
Chem. Eng. J., 164 (2010) 168–177.
- M.R. Lasheen, N.S. Ammar, H.S. Ibrahim, Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically
modified orange peel: equilibrium and kinetic studies, Solid
State Sci., 14 (2012) 202–210.
- A. Ali, K. Saeed, F. Mabood, Removal of chromium(VI) from
aqueous medium using chemically modified banana peels
as efficient low-cost adsorbent, Alexandria Eng. J., 55 (2016)
2933–2942.
- H. Khoshsang, A. Ghaffarinejad, Rapid removal of lead(II)
ions from aqueous solutions by saffron flower waste as a green
biosorbent, J. Environ. Chem. Eng., 6 (2018) 6021–6027.
- M.J. Rwiza, S.-Y. Oh, K.-W. Kim, S.D. Kim, Comparative
sorption isotherms and removal studies for Pb(II) by physical
and thermochemical modification of low-cost agro-wastes from
Tanzania, Chemosphere, 195 (2018) 135–145.
- Ş. Taşar, F. Kaya, A. Özer, Biosorption of lead(II) ions from
aqueous solution by peanut shells: equilibrium, thermodynamic
and kinetic studies, J. Environ. Chem. Eng., 2 (2014) 1018–1026.
- Y. Wang, B. Yi, X. Sun, L. Yu, L. Wu, W. Liu, D. Wang, Y. Li,
R. Jia, H. Yu, Removal and tolerance mechanism of Pb by a
filamentous fungus: a case study, Chemosphere, 225 (2019)
200–208.
- G. Wang, S. Zhang, P. Yao, Y. Chen, X. Xu, T. Li, G. Gong,
Removal of Pb(II) from aqueous solutions by Phytolacca
americana L. biomass as a low cost biosorbent, Arabian J. Chem.,
11 (2018) 99–110.
- L. Bulgariu, D. Bulgariu, Functionalized soy waste biomass
– a novel environmental-friendly biosorbent for the removal
of heavy metals from aqueous solution, J. Cleaner Prod.,
197 (2018) 875–885.
- S. Kamel, H. Abou-Yousef, M. Yousef, M. El-Sakhawy, Potential
use of bagasse and modified bagasse for removing of iron and
phenol from water, Carbohydr. Polym., 88 (2012) 250–256.
- E. Heraldy, W.W. Lestari, D. Permatasari, D.D. Arimurti,
Biosorbent from tomato waste and apple juice residue for lead
removal, J. Environ. Chem. Eng., 6 (2018) 1201–1208.
- G. Blazquez, M. Calero, C. Trujillo, A. Martin-Lara, A. Ronda,
Binary biosorption of Cu(II)-Pb(II) mixtures onto pine nuts
shell in batch and packed bed systems, Environ. Eng. Manage.
J., 17 (2018) 1349–1361.
- B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous
solution and industrial effluent using natural/agricultural
wastes, Colloids Surf., B, 107 (2013) 97–106.
- R. Davarnejad, P. Panahi, Cu(II) and Ni(II) removal from aqueous
solutions by adsorption on Henna and optimization of effective
parameters by using the response surface methodology, J. Ind.
Eng. Chem., 33 (2016) 270–275.
- R. Davarnejad, P. Panahi, Cu(II) removal from aqueous
wastewaters by adsorption on the modified Henna with Fe3O4
nanoparticles using response surface methodology, Sep. Purif.
Technol., 158 (2016) 286–292.
- R. Davarnejad, Z.K. Dastnayi, J. Kennedy, Cr(VI) adsorption on
the blends of Henna with chitosan microparticles: experimental
and statistical analysis, Int. J. Biol. Macromol., 116 (2018)
281–288.
- M. Shafiee, A. Akbari, B. Ghiassimehr, Removal of Pb(II)
from wastewater using Henna; optimization of operational
conditions, Iran. J. Chem. Eng., 15 (2018) 17–26.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- H. Freundlich, Over the adsorption in solution, J. Phys. Chem.,
57 (1906) 1100–1107.
- B. Houari, S. Louhibi, K. Tizaoui, L. Boukli-Hacene, B. Benguella,
T. Roisnel, V. Dorcet, New synthetic material removing heavy
metals from aqueous solutions and wastewater, Arabian J.
Chem., 12 (2019) 5040–5048.
- M. Sharma, J. Singh, S. Hazra, S. Basu, Adsorption of heavy
metal ions by mesoporous ZnO and TiO2@ZnO monoliths:
adsorption and kinetic studies, Microchem. J., 145 (2019)
105–112.
- I. Vishan, B. Saha, S. Sivaprakasam, A. Kalamdhad, Evaluation
of Cd(II) biosorption in aqueous solution by using lyophilized
biomass of novel bacterial strain Bacillus badius AK: biosorption
kinetics, thermodynamics and mechanism, Environ. Technol.
Innovation, 14 (2019) 100323, doi: 10.1016/j.eti.2019.100323.
- Y.-S. Ho, G. McKay, Pseudo-second-order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- C. Xiong, S. Wang, W. Sun, Y. Li, Selective adsorption of Pb(II)
from aqueous solution using nanosilica functionalized with
diethanolamine: equilibrium, kinetic and thermodynamic,
Microchem. J., 146 (2019) 270–278.
- E.-S. El-Ashtoukhy, N.K. Amin, O. Abdelwahab, Removal
of lead(II) and copper(II) from aqueous solution using
pomegranate peel as a new adsorbent, Desalination, 223 (2008)
162–173.
- D. Mohan, K.P. Singh, Single-and multi-component adsorption
of cadmium and zinc using activated carbon derived from
bagasse—an agricultural waste, Water Res., 36 (2002) 2304–2318.
- L.N. Nemeş, L. Bulgariu, Optimization of process parameters
for heavy metals biosorption onto mustard waste biomass,
Open Chem., 14 (2016) 175–187.
- N. Nasuha, B. Hameed, A.T.M. Din, Rejected tea as a potential
low-cost adsorbent for the removal of methylene blue,
J. Hazard. Mater., 175 (2010) 126–132.
- J. Goel, K. Kadirvelu, C. Rajagopal, V. Garg, Removal of lead(II)
from aqueous solution by adsorption on carbon aerogel using
a response surface methodological approach, Ind. Eng. Chem.
Res., 44 (2005) 1987–1994.
- K. Cronje, K. Chetty, M. Carsky, J. Sahu, B. Meikap, Optimization
of chromium(VI) sorption potential using developed activated
carbon from sugarcane bagasse with chemical activation by
zinc chloride, Desalination, 275 (2011) 276–284.
- R.K. Mohapatra, P.K. Parhi, S. Pandey, B.K. Bindhani, H. Thatoi,
C.R. Panda, Active and passive biosorption of Pb(II) using live
and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies, J. Environ. Manage.,
247 (2019) 121–134.
- U. Farooq, M. Khan, M. Athar, Triticum aestivum: a novel
biosorbent for lead(II) ions, Agrochimica, 51 (2007) 309–318.
- I. Abdelfattah, A.A. Ismail, F. Al Sayed, A. Almedolab,
K. Aboelghait, Biosorption of heavy metals ions in real
industrial wastewater using peanut husk as efficient and cost
effective adsorbent, Environ. Nanotechnol. Monit. Manage.,
6 (2016) 176–183.
- R. Malik, S. Dahiya, An experimental and quantum chemical
study of removal of utmostly quantified heavy metals
in wastewater using coconut husk: a novel approach to
mechanism, Int. J. Biol. Macromol., 98 (2017) 139–149.
- Q. Albert, L. Leleyter, M. Lemoine, N. Heutte, J.-P. Rioult,
L. Sage, F. Baraud, D. Garon, Comparison of tolerance and
biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus
Absidia cylindrospora, Chemosphere, 196 (2018) 386–392.
- V. Afraz, H. Younesi, M. Bolandi, M.R. Hadiani, Optimization of
lead and cadmium biosorption by Lactobacillus acidophilus using
response surface methodology, Biocatal. Agric. Biotechnol.,
29 (2020) 101828,
doi: 10.1016/j.bcab.2020.101828.