References
- C. Bhattacharjee, S. Dutta, V.K. Saxena, A review on biosorptive
removal of dyes and heavy metals from wastewater using
watermelon rind as biosorbent, Environ. Adv., 2 (2020) 100007,
doi: 10.1016/j.envadv.2020.100007.
- S. Mishra, L. Cheng, A. Maiti, The utilization of agro-biomass/
by-products for effective bio-removal of dyes from dyeing
wastewater: a comprehensive review, J. Environ. Chem. Eng.,
9 (2021) 104901,
doi: 10.1016/j.jece.2020.104901.
- S. Afroze, T.K. Sen, A review on heavy metal ions and
dye adsorption from water by agricultural solid waste
adsorbents, Water Air Soil Pollut., 229 (2018) 225, doi: 10.1007/
s11270-018-3869-z.
- R. Chakraborty, A. Asthana, A.K. Singh, B. Jain, A.B.H.
Susan, Adsorption of heavy metal ions by various low-cost
adsorbents: a review, Int. J. Environ. Anal. Chem., (2020) 1–38,
doi: 10.1080/03067319.2020.1722811.
- O. Abdelwahab, N. Amin, E.Z. El-Ashtoukhy, Removal of zinc
ions from aqueous solution using a cation exchange resin,
Chem. Eng. Res. Des., 91 (2013) 165–173.
- M. Urgun-Demirtas, P.L. Benda, P.S. Gillenwater, M.C. Negri,
H. Xiong, S.W. Snyder, Achieving very low mercury levels in
refinery wastewater by membrane filtration, J. Hazard. Mater.,
215 (2012) 98–107.
- B. Yasemin, B. Zubeyde, Removal of Pb(II) from wastewater
using wheat bran, J. Environ. Manage., 78 (2006) 107–113.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- Z. Carmen, S. Daniela, Textile Organic Dyes – Characteristics,
Polluting Effects and Separation/Elimination Procedures
From Industrial Effluents – A Critical Overview, T. Puzyn,
A. Mostrag-Szlichtyng, Eds., Organic Pollutants Ten Years After
the STOCKHOLM Convention-Environmental and Analytical
Update, InTechOpen, Rijeka, Croatia, 2012, doi: 10.5772/32373.
- K.G. Pavithra, V. Jaikumar, Removal of colorants from wastewater:
a review on sources and treatment strategies, J. Ind. Eng.
Chem., 75 (2019) 1–19.
- D. Rama Devi, G. Srinivasan, S. Kothandaraman, S. Ashok
Kumar, State-of-the-Art Review—Methods of Chromium
Removal from Water and Wastewater, Sustainable Practices and
Innovations in Civil Engineering, Springer, Singapore, 2020,
pp. 37–51.
- S.S. Beulah, K. Muthukumaran, Methodologies of removal of
dyes from wastewater: a review, Int. Res. J. Pure Appl. Chem.,
21 (2020) 68–78.
- S. Martini, M. Setiawati, Technology for treating oily wastewater
derived from various industries: a review paper, Chemica:
Jurnal Teknik Kimia, 7 (2021) 106–116.
- S. Tamjidi, H. Esmaeili, Chemically modified CaO/Fe3O4
nanocomposite by sodium dodecyl sulfate for Cr(III) removal
from water, Chem. Eng. Technol., 42 (2019) 607–616.
- I.A. El Gheriany, F.A. El Saqa, A.A.E.R. Amer, M. Hussein, Oil
spill sorption capacity of raw and thermally modified orange
peel waste, Alexandria Eng. J., 59 (2020) 925–932.
- T. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and
mechanism of removal of Methylene blue from aqueous
solution by adsorption onto pine cone biomass of Pinus radiata,
Water Air Soil Pollut., 218 (2011) 499–515.
- M.T. Yagub, T.K. Sen, H. Ang, Equilibrium, kinetics, and
thermodynamics of Methylene blue adsorption by pine tree
leaves, Water Air Soil Pollut., 223 (2012) 5267–5282.
- M. Rauf, M. Meetani, S. Hisaindee, An overview on the
photocatalytic degradation of azo dyes in the presence of TiO2
doped with selective transition metals, Desalination, 276 (2011)
13–27.
- M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui,
A. El Bachiri, A. El Harfi, Textile finishing dyes and their impact
on aquatic environs, Heliyon, 5 (2019) e02711, doi: 10.1016/j.
heliyon.2019.e02711.
- F.I. Khan, S. Abbasi, Techniques and methodologies for risk
analysis in chemical process industries, J. Loss Prev. Process
Ind., 11 (1998) 261–277.
- E. Guerra, M. Llompart, C. Garcia-Jares, Analysis of dyes in
cosmetics: challenges and recent developments, Cosmetics,
5 (2018) 47, doi: 10.3390/cosmetics5030047.
- A. Mosbah, H. Chouchane, S. Abdelwahed, A. Redissi,
M. Hamdi, S. Kouidhi, M. Neifar, A. Slaheddine Masmoudi,
A. Cherif, W. Mnif, Peptides fixing industrial textile dyes:
a new biochemical method in wastewater treatment, J. Chem.,
2019 (2019) 5081807, doi: 10.1155/2019/5081807.
- P. Semeraro, V. Rizzi, P. Fini, S. Matera, P. Cosma, E. Franco,
R. García, M. Ferrándiz, E. Núñez, J.A. Gabaldón, Interaction
between industrial textile dyes and cyclodextrins, Dyes Pigm.,
119 (2015) 84–94.
- R. Bushra, S. Mohamad, Y. Alias, Y. Jin, M. Ahmad, Current
approaches and methodologies to explore the perceptive
adsorption mechanism of dyes on low-cost agricultural waste:
a review, Microporous Mesoporous Mater., 319 (2021) 111040,
doi: 10.1016/j.micromeso.2021.111040.
- C. Antuña-Nieto, E. Rodríguez, M.A. Lopez-Anton, R. García,
M.R. Martínez-Tarazona, Noble metal-based sorbents: a way to
avoid new waste after mercury removal, J. Hazard. Mater., 400
(2020) 123168, doi: 10.1016/j.jhazmat.2020.123168.
- F. Di Natale, A. Lancia, A. Molino, M. Di Natale, D. Karatza,
D. Musmarra, Capture of mercury ions by natural and industrial
materials, J. Hazard. Mater., 132 (2006) 220–225.
- I.B. Rae, S.W. Gibb, S. Lu, Biosorption of Hg from aqueous
solutions by crab carapace, J. Hazard. Mater., 164 (2009) 1601–1604.
- K. Low, C. Lee, S. Liew, Sorption of cadmium and lead from
aqueous solutions by spent grain, Process Biochem., 36 (2000)
59–64.
- M.A. Assi, M.N.M. Hezmee, A.W. Haron, M.Y.M. Sabri,
M.A. Rajion, The detrimental effects of lead on human and
animal health, Vet. World, 9 (2016) 660–671.
- P. Mishra, R. Patel, Removal of lead and zinc ions from water
by low cost adsorbents, J. Hazard. Mater., 168 (2009) 319–325.
- Y. Wang, D.C. Tsang, Effects of solution chemistry on arsenic(V)
removal by low-cost adsorbents, J. Environ. Sci., 25 (2013)
2291–2298.
- H. Timalsina, B. Mainali, M.J. Angove, T. Komai, S.R. Paudel,
Potential modification of groundwater arsenic removal filter
commonly used in Nepal: a review, Groundwater Sustainable
Dev., 12 (2021) 100549, doi: 10.1016/j.gsd.2021.100549.
- P. Mondal, C. Majumder, B. Mohanty, Laboratory based
approaches for arsenic remediation from contaminated water:
recent developments, J. Hazard. Mater., 137 (2006) 464–479.
- D.S. Tavares, C.B. Lopes, J.P. Coelho, M.E. Sánchez, A.I. Garcia,
A.C. Duarte, M. Otero, E. Pereira, Removal of arsenic from
aqueous solutions by sorption onto sewage sludge-based
sorbent, Water Air Soil Pollut., 223 (2012) 2311–2321.
- C.B. Tabelin, T. Igarashi, M. Villacorte-Tabelin, I. Park,
E.M. Opiso, M. Ito, N. Hiroyoshi, Arsenic, selenium, boron,
lead, cadmium, copper, and zinc in naturally contaminated
rocks: a review of their sources, modes of enrichment,
mechanisms of release, and mitigation strategies, Sci. Total
Environ., 645 (2018) 1522–1553.
- C.-S. Zhu, L.-P. Wang, W.-B. Chen, Removal of Cu(II) from
aqueous solution by agricultural by-product: peanut hull,
J. Hazard. Mater., 168 (2009) 739–746.
- F.-L. Mi, S.-J. Wu, F.-M. Lin, Adsorption of copper(II) ions by
a chitosan–oxalate complex biosorbent, Int. J. Biol. Macromol.,
72 (2015) 136–144.
- F. Qi, D. Lamb, R. Naidu, N.S. Bolan, Y. Yan, Y.S. Ok,
M.M. Rahman, G. Choppala, Cadmium solubility and
bioavailability in soils amended with acidic and neutral biochar,
Sci. Total Environ., 610 (2018) 1457–1466.
- M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as lowcost
adsorbents in water and wastewater treatment, Ind. Eng.
Chem. Res., 50 (2011) 13589–13613.
- N. Kazakis, N. Kantiranis, K. Kalaitzidou, E. Kaprara,
M. Mitrakas, R. Frei, G. Vargemezis, D. Vogiatzis,
A. Zouboulis,
A. Filippidis, Environmentally available hexavalent chromium
in soils and sediments impacted by dispersed fly ash in Sarigkiol
basin (Northern Greece), Environ. Pollut., 235 (2018) 632–641.
- S.S. Kerur, S. Bandekar, M.S. Hanagadakar, S.S. Nandi,
G.M. Ratnamala, P.G. Hegde, Removal of hexavalent
chromium-industry treated water and wastewater: a review,
Mater. Today:. Proc., 42 (2021) 1112–1121.
- H. Es-Sahbany, M. Berradi, S. Nkhili, R. Hsissou, M. Allaoui,
M. Loutfi, D. Bassir, M. Belfaquir, M.S. El Youbi, Removal of
heavy metals (nickel) contained in wastewater-models by the
adsorption technique on natural clay, Mater. Today:. Proc.,
13 (2019) 866–875.
- Y. Hannachi, N.A. Shapovalov, A. Hannachi, Adsorption of
nickel from aqueous solution by the use of low-cost adsorbents,
Korean J. Chem. Eng., 27 (2010) 152–158.
- E. Bibaj, K. Lysigaki, J. Nolan, M. Seyedsalehi, E. Deliyanni,
A. Mitropoulos, G. Kyzas, Activated carbons from banana peels
for the removal of nickel ions, Int. J. Environ. Sci. Technol.,
16 (2019) 667–680.
- A. Hawari, Z. Rawajfih, N. Nsour, Equilibrium and
thermodynamic analysis of zinc ions adsorption by olive oil
mill solid residues, J. Hazard. Mater., 168 (2009) 1284–1289.
- O.B. Akpor, G.O. Ohiobor, D. Olaolu, Heavy metal pollutants
in wastewater effluents: sources, effects and remediation, Adv.
Biosci. Bioeng., 2 (2014) 37–43.
- N.P. Cheremisinoff, Handbook of Water and Wastewater
Treatment Technologies, Butterworth-Heinemann, United
States of America, 2001.
- C. Yang, W. Xu, Y. Nan, Y. Wang, Y. Hu, C. Gao, X. Chen,
Fabrication and characterization of a high performance
polyimide ultrafiltration membrane for dye removal, J. Colloid
Interface Sci., 562 (2020) 589–597.
- X. Liu, B. Jiang, X. Yin, H. Ma, B.S. Hsiao, Highly permeable
nanofibrous composite microfiltration membranes for removal
of nanoparticles and heavy metal ions, Sep. Purif. Technol.,
233 (2020) 115976,
doi: 10.1016/j.seppur.2019.115976.
- S. Martini, K.A. Roni, The existing technology and the
application of digital artificial intelligent in the wastewater
treatment area: a review paper, J. Phys.: Conf. Ser., 1858 (2021)
012013.
- T.A. Saleh, V.K. Gupta, Nanomaterial and Polymer Membranes:
Synthesis, Characterization, and Applications, Elsevier,
Netherlands, 2016.
- I.A. Khan, Y.-S. Lee, J.-O. Kim, A comparison of variations
in blocking mechanisms of membrane-fouling models for
estimating flux during water treatment, Chemosphere,
259 (2020) 127328,
doi: 10.1016/j.chemosphere.2020.127328.
- D. al deen Atallah Aljuboury, F. Shaik, Assessment of TiO2/ZnO/H2O2 photocatalyst to treat wastewater from oil refinery
within visible light circumstances, S. Afr. J. Chem. Eng.,
35 (2021) 69–77.
- R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced
oxidation processes (AOP) for water purification and recovery,
Catal. Today, 53 (1999) 51–59.
- J.M. Ochando-Pulido, M.D. Victor-Ortega, G. Hodaifa,
A. Martinez-Ferez, Physicochemical analysis and adequation
of olive oil mill wastewater after advanced oxidation process
for reclamation by pressure-driven membrane technology,
Sci. Total Environ., 503–504 (2015) 113–121.
- J.A. Garrido-Cardenas, B. Esteban-García, A. Agüera,
J.A. Sánchez-Pérez, F. Manzano-Agugliaro, Wastewater
treatment by advanced oxidation process and their worldwide
research trends, Int. J. Environ. Res. Public Health, 17 (2020)
170, doi: 10.3390/ijerph17010170.
- S. Martini, H.T. Znad, H.M. Ang, Photo-Assisted Fenton
Process for the Treatment of Canola Oil Effluent, Chemeca
2014: Processing Excellence; Powering Our Future, Engineers
Australia, Barton, ACT, Australia, 2014.
- M. Tariq, M. Muhammad, J. Khan, A. Raziq, M.K. Uddin,
A. Niaz, S.S. Ahmed, A. Rahim, Removal of Rhodamine B dye
from aqueous solutions using photo-Fenton processes and
novel Ni-Cu@MWCNTs photocatalyst, J. Mol. Liq., 312 (2020)
113399, doi: 10.1016/j.molliq.2020.113399.
- A. Jamil, T.H. Bokhari, T. Javed, R. Mustafa, M. Sajid,
S. Noreen, M. Zuber, A. Nazir, M. Iqbal, M.I. Jilani,
Photocatalytic degradation of disperse dye Violet-26 using TiO2
and ZnO nanomaterials and process variable optimization,
J. Mater. Res. Technol., 9 (2020) 1119–1128.
- M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris,
Cationic and anionic dye adsorption by agricultural solid
wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
- H. Xu, B. Yang, Y. Liu, F. Li, X. Song, X. Cao, W. Sand,
Evolution of microbial populations and impacts of microbial
activity in the anaerobic-oxic-settling-anaerobic process
for simultaneous sludge reduction and dyeing wastewater
treatment, J. Cleaner Prod., 282 (2021) 124403, doi: 10.1016/j.
jclepro.2020.124403.
- Y.L. Pang, A.Z. Abdullah, Current status of textile industry
wastewater management and research progress in Malaysia: a
review, Clean–Soil Air Water, 41 (2013) 751–764.
- S. Mishra, A. Maiti, Biological Methodologies for Treatment
of Textile Wastewater, R. Singh, P. Shukla, P. Singh, Eds.,
Environmental Processes and Management, Water Science and
Technology Library, Vol. 91, Springer, Cham, 2020.
- M. Gómez-Ramírez, S.A. Tenorio-Sánchez, Treatment of Solid
Waste Containing Metals by Biological Methods, E.R. Rhodes,
H. Naser, Eds., Natural Resources Management and Biological
Sciences, IntechOpen, 2020, doi: 10.5772/intechopen.92211.
- M. Venegas, A.M. Leiva, C. Reyes-Contreras, P. Neumann, B.
Piña, G. Vidal, Presence and fate of micropollutants during
anaerobic digestion of sewage and their implications for the
circular economy: a short review, J. Environ. Chem. Eng.,
9 (2021) 104931, doi:10.1016/j.jece.2020.104931.
- C. Zhao, J. Zhou, Y. Yan, L. Yang, G. Xing, H. Li, P. Wu,
M. Wang, H. Zheng, Application of coagulation/flocculation
in oily wastewater treatment: a review, Sci. Total Environ.,
765 (2020) 142795, doi:10.1016/j.scitotenv.2020.142795.
- J.E. Drinan, F. Spellman, Water and Wastewater Treatment: A Guide
for the Nonengineering Professional, 2nd ed., CRC Press, United
States of America, 2012.
- T.A. Kurniawan, G.Y. Chan, W.-H. Lo, S. Babel, Physico–
chemical treatment techniques for wastewater laden with heavy
metals, Chem. Eng. J., 118 (2006) 83–98.
- N.U. Barambu, M.R. Bilad, M.A. Bustam, K.A. Kurnia,
M.H.D. Othman, N.A.H.M. Nordin, Development of membrane
material for oily wastewater treatment: a review, Ain Shams
Eng. J., 12 (2021) 1361–1374.
- S. Martini, E. Yuliwati, Membrane development and its hybrid
application for oily wastewater treatment: a review, J. Appl.
Membr. Sci. Technol., 25 (2020) 57–71.
- S. Martini, H.M. Ang, Hybrid TiO2/UV/PVDF ultrafiltration
membrane for raw canola oil wastewater treatment, Desal.
Water Treat., 148 (2019) 51–59.
- O. Khalifa, F. Banat, C. Srinivasakannan, F. AlMarzooqi,
S.W. Hasan, Ozonation-assisted electro-membrane hybrid
reactor for oily wastewater treatment: a methodological
approach and synergy effects, J. Cleaner Prod., 289 (2020)
125764, doi: 10.1016/j.jclepro.2020.125764.
- M. Sri, A.H. Ming, Z. Hussein, Integrated ultrafiltration
membrane unit for efficient petroleum refinery effluent
treatment, CLEAN – Soil Air Water, 45 (2017) 1600342,
doi: 10.1002/clen.201600342.
- M.N. Rashed, Photocatalytic Degradation of Divalent Metals
Under Sunlight Irradiation Using Nanoparticle TiO2 Modified
Concrete Materials (Recycled Glass Cullet), M. Baawain,
B. Choudri, M. Ahmed, A. Purnama, Eds., Recent Progress
in Desalination, Environmental and Marine Outfall Systems,
Springer, Cham, 2015, pp. 93–108.
- M. Chen, W. Ding, J. Wang, G. Diao, Removal of azo dyes
from water by combined techniques of adsorption, desorption,
and electrolysis based on a supramolecular sorbent, Ind. Eng.
Chem. Res., 52 (2013) 2403–2411.
- A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel
Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed, A.A. Nada,
Efficiently activated carbons from corn cob for Methylene blue
adsorption, Appl. Surf. Sci. Adv., 3 (2021) 100037, doi: 10.1016/j.
apsadv.2020.100037.
- B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a
low-cost adsorbent for aqueous heavy metal removal: a review,
J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j.
jaap.2021.105081.
- M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir,
A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents
for copper removal from industrial wastewater—a review,
J. Hazard. Mater., 263 (2013) 322–333.
- Y. Li, J. Liu, Q. Yuan, H. Tang, F. Yu, X. Lv, A green adsorbent
derived from banana peel for highly effective removal of heavy
metal ions from water, RSC Adv., 6 (2016) 45041–45048.
- K. Huang, Y. Xiu, H. Zhu, Removal of heavy metal ions
from aqueous solution by chemically modified mangosteen
pericarp, Desal. Water Treat., 52 (2014) 7108–7116.
- E. Rosales, J. Meijide, T. Tavares, M. Pazos, M. Sanromán,
Grapefruit peelings as a promising biosorbent for the removal
of leather dyes and hexavalent chromium, Process Saf. Environ.
Prot., 101 (2016) 61–71.
- S.D. Devasangeeth, G. Balaji, R. Lakshmipathy, Multi metal
ion sorption capacity of watermelon rind extract capped ZnS
nanoparticles, Int. J. Pure Appl. Math., 118 (2018) 1–12.
- B. Volesky, Biosorption and me, Water Res., 41 (2007)
4017–4029.
- F. Veglio, F. Beolchini, Removal of metals by biosorption: a
review, Hydrometallurgy, 44 (1997) 301–316.
- K. Vijayaraghavan, R. Balasubramanian, Is biosorption suitable
for decontamination of metal-bearing wastewaters? A critical
review on the state-of-the-art of biosorption processes and
future directions, J. Environ. Manage., 160 (2015) 283–296.
- S. Srivastava, P. Goyal, Novel Biomaterials: Decontamination
of Toxic Metals from Wastewater, Springer Science & Business
Media, Germany, 2010.
- L.B. Escudero, P.Y. Quintas, R.G. Wuilloud, G.L. Dotto,
Recent advances on elemental biosorption, Environ. Chem.
Lett., 17 (2019) 409–427.
- D.F. Mohamad, N.S. Osman, M.K.H.M. Nazri, A.A. Mazlan,
M.F. Hanafi, Y.A.M. Esa, M.I.I.M. Rafi, M.N. Zailani,
N.N. Rahman, A.H.A. Rahman, N. Sapawe, Synthesis of
mesoporous silica nanoparticle from banana peel ash for
removal of phenol and methyl orange in aqueous solution,
Mater. Today:. Proc., 19 (2019) 1119–1125.
- S. Pavithra, T. Gomathi, S. Sugashini, P.N. Sudha,
H.H. Alkhamis, A.F. Alrefaei, M.H. Almutairi, Batch
adsorption studies on surface tailored chitosan/orange peel
hydrogel composite for the removal of Cr(VI) and Cu(II)
ions from synthetic wastewater, Chemosphere, 271 (2021)
129415, doi:10.1016/j.chemosphere.2020.129415.
- A. Agarwal, U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel,
A review on valorization of biomass in heavy metal removal
from wastewater, J. Water Process Eng., 38 (2020) 101602,
doi: 10.1016/j.jwpe.2020.101602.
- M. Om Prakash, G. Raghavendra, S. Ojha, M. Panchal,
Characterization of porous activated carbon prepared from
arhar stalks by single step chemical activation method, Mater.
Today:. Proc., 39 (2020), doi:10.1016/j.matpr.2020.05.370.
- Y. Tang, T. Lin, C. Jiang, Y. Zhao, S. Ai, Renewable adsorbents
from carboxylate-modified agro-forestry residues for efficient
removal of Methylene blue dye, J. Phys. Chem. Solids,
149 (2021) 109811, doi:10.1016/j.jpcs.2020.109811.
- H. Karimi, M.A. Heidari, H.B.M. Emrooz, M. Shokouhimehr,
Carbonization temperature effects on adsorption performance
of metal-organic framework derived nanoporous carbon for
removal of Methylene blue from wastewater; experimental
and spectrometry study, Diamond Relat. Mater., 108 (2020)
107999, doi:10.1016/j.diamond.2020.107999.
- M.A. Ahsan, S.K. Katla, M.T. Islam, J.A. Hernandez-Viezcas,
L.M. Martinez, C.A. Díaz-Moreno, J. Lopez, S.R. Singamaneni,
J. Banuelos, J. Gardea-Torresdey, Adsorptive removal of Methylene
blue, tetracycline and Cr(VI) from water using sulfonated
tea waste, Environ. Technol. Innovation, 11 (2018) 23–40.
- S. Dawood, T. Sen, C. Phan, Synthesis and characterisation of
novel-activated carbon from waste biomass pine cone and its
application in the removal of Congo red dye from aqueous
solution by adsorption, Water Air Soil Pollut., 225 (2013) 1–16.
- M. Dubinin, L. Radushkevich, Evaluation of microporous
material with a new isotherm, Dokl Akad Nauk SSSR, (1966)
331–347.
- N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and
interpretation of adsorption isotherms, J. Chem., 2017 (2017)
3039817, doi: 10.1155/2017/3039817.
- M.A. Ahsan, S.K. Katla, M.T. Islam, J.A. Hernandez-Viezcas,
L.M. Martinez, C.A. Díaz-Moreno, J. Lopez,
S.R. Singamaneni,
J. Banuelos, J. Gardea-Torresdey, J.C. Noveron, Adsorptive
removal of Methylene blue, tetracycline and Cr(VI) from water
using sulfonated tea waste, Environ. Technol. Innovation,
11 (2018) 23–40.
- S.Y. Lagergren, Zur Theorie der sogenannten Adsorption
gelöster Stoffe, 1898.
- B.K. Nandi, A. Goswami, M.K. Purkait, Removal of
cationic dyes from aqueous solutions by kaolin: kinetic and
equilibrium studies, Appl. Clay Sci., 42 (2009) 583–590.
- T.K. Sen, M.V. Sarzali, Removal of cadmium metal ion (Cd2+)
from its aqueous solution by aluminium oxide (Al2O3): a kinetic
and equilibrium study, Chem. Eng. J., 142 (2008) 256–262.
- A. El Shahawy, G. Heikal, Organic pollutants removal from
oily wastewater using clean technology economically, friendly
biosorbent (Phragmites australis), Ecol. Eng., 122 (2018) 207–218.
- G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange
adsorption of ions from aqueous solutions by organic zeolites.
11. Kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
- A. Wilczak, T.M. Keinath, Kinetics of sorption and desorption
of copper(II) and lead(II) on activated carbon, Water Environ.
Res., 65 (1993) 238–244.
- S. Afroze, T.K. Sen, M. Ang, H. Nishioka, Adsorption
of Methylene blue dye from aqueous solution by novel
biomass Eucalyptus sheathiana bark: equilibrium, kinetics,
thermodynamics and mechanism, Desal. Water Treat.,
57 (2015) 5858–5878.
- S. Martini, S. Afroze, K. Ahmad Roni, Modified eucalyptus
bark as a sorbent for simultaneous removal of COD, oil,
and Cr(III) from industrial wastewater, Alexandria Eng. J.,
59 (2020) 1637–1648.
- S. Tamjidi, B.K. Moghadas, H. Esmaeili, F.S. Khoo, G. Gholami,
M. Ghasemi, Improving the surface properties of adsorbents
by surfactants and their role in the removal of toxic metals
from wastewater: a review study, Process Saf. Environ.
Prot., 148 (2021) 775–795.
- M. Ajmal, R.A.K. Rao, R. Ahmad, J. Ahmad, Adsorption
studies on Citrus reticulata (fruit peel of orange): removal and
recovery of Ni(II) from electroplating wastewater, J. Hazard.
Mater., 79 (2000) 117–131.
- J.K. Bediako, S. Lin, A.K. Sarkar, Y. Zhao, J.-W. Choi,
M.-H. Song, C.-W. Cho, Y.-S. Yun, Evaluation of orange peelderived
activated carbons for treatment of dye-contaminated
wastewater tailings, Environ. Sci. Pollut. Res., 27 (2020)
1053–1068.
- F. Çatlıoğlu, S. Akay, B. Gözmen, E. Turunc, I. Anastopoulos,
B. Kayan, D. Kalderis, Fe-modified hydrochar from orange
peel as adsorbent of food colorant Brilliant black: process
optimization and kinetic studies, Int. J. Environ. Sci. Technol.,
17 (2019) 1975–1990.
- V.S. Munagapati, D.-S. Kim, Adsorption of anionic azo dye
Congo red from aqueous solution by cationic modified
orange peel powder, J. Mol. Liq., 220 (2016) 540–548.
- V.S. Munagapati, J.-C. Wen, C.-L. Pan, Y. Gutha, J.-H. Wen,
Enhanced adsorption performance of Reactive red 120 azo
dye from aqueous solution using quaternary amine modified
orange peel powder, J. Mol. Liq., 285 (2019) 375–385.
- K. Al-Azabi, S. Al-Marog, A. Abukrain, M. Sulyman,
Equilibrium, isotherm studies of dye adsorption onto orange
peel powder, Chem. Res. J., 3 (2018) 45–59.
- S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma,
C.L. Lee, H.A. Chase, Microwave-assisted pyrolysis with
chemical activation, an innovative method to convert orange
peel into activated carbon with improved properties as dye
adsorbent, J. Cleaner Prod., 162 (2017) 1376–1387.
- E. Safari, N. Rahemi, D. Kahforoushan, S. Allahyari, Copper
adsorptive removal from aqueous solution by orange peel
residue carbon nanoparticles synthesized by combustion
method using response surface methodology, J. Environ.
Chem. Eng., 7 (2019) 102847, doi: 10.1016/j.jece.2018.102847.
- S. Guiza, Biosorption of heavy metal from aqueous solution
using cellulosic waste orange peel, Ecol. Eng., 99 (2017)
134–140.
- A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Agricultural
waste peels as versatile biomass for water purification –
a review, Chem. Eng. J., 270 (2015) 244–271.
- A.A. Abu Bakar, W.N.R. Wan Mazlan, N.A. Akbar,
S. Badrealam, K.A. Muhammad Ali, Agriculture waste from
banana peel as low cost adsorbent in treating Methylene blue
from batik textile waste water effluents, J. Phys.: Conf. Ser.,
1349 (2019) 012078.
- P. Zhang, D.O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang,
D.C. Tsang, Y.S. Ok, D. Hou, A green biochar/iron oxide
composite for Methylene blue removal, J. Hazard. Mater.,
384 (2020) 121286, doi: 10.1016/j.jhazmat.2019.121286.
- V.S. Munagapati, J.-C. Wen, C.-L. Pan, Y. Gutha, J.-H. Wen,
G.M. Reddy, Adsorptive removal of anionic dye (Reactive
black 5) from aqueous solution using chemically modified
banana peel powder: kinetic, isotherm, thermodynamic,
and reusability studies, Int. J. Phytorem., 22 (2019) 267–278.
- A.A. Oyekanmi, A. Ahmad, K. Hossain, M. Rafatullah,
Adsorption of Rhodamine B dye from aqueous solution onto
acid treated banana peel: response surface methodology,
kinetics and isotherm studies, PLoS One, 14 (2019),
doi: 10.1371/journal.pone.0216878.
- A. Ashraf, I. Bibi, N.K. Niazi, Y.S. Ok, G. Murtaza, M. Shahid,
A. Kunhikrishnan, D. Li, T. Mahmood, Chromium(VI)
sorption efficiency of acid-activated banana peel over organomontmorillonite
in aqueous solutions, Int. J. Phytorem.,
19 (2017) 605–613.
- A. Ali, K. Saeed, F. Mabood, Removal of chromium(VI) from
aqueous medium using chemically modified banana peels
as efficient low-cost adsorbent, Alexandria Eng. J., 55 (2016)
2933–2942.
- S. Mirta, E. Baldwin, Mango, Book Chapter, USDA
Agricultural Research Service, U.S. Department of
Agriculture, 1997. Available from: https://www.ars.usda.gov/
research/publications/publication/?seqNo115=88473
- P. Sudamalla, P. Saravanan, M. Matheswaran, Optimization
of operating parameters using response surface methodology
for adsorption of Crystal violet by activated carbon prepared
from mango kernel, Environ. Res., 22 (2012) 1–7.
- S. Shoukat, H.N. Bhatti, M. Iqbal, S. Noreen, Mango stone
biocomposite preparation and application for Crystal violet
adsorption: a mechanistic study, Microporous Mesoporous
Mater., 239 (2017) 180–189.
- M.M. Dávila-Jiménez, M.P. Elizalde-González, V. Hernández-
Montoya, Performance of mango seed adsorbents in the
adsorption of anthraquinone and azo acid dyes in single and
binary aqueous solutions, Bioresour. Technol., 100 (2009)
6199–6206.
- A.H. Jawad, N.H. Mamat, M.F. Abdullah, K. Ismail,
Adsorption of Methylene blue onto acid-treated mango peels:
kinetic, equilibrium and thermodynamic study, Desal. Water
Treat., 59 (2017) 210–219.
- D. Singh, V. Sowmya, S. Abinandan, S. Shanthakumar,
Removal of Malachite green dye by Mangifera indica seed
kernel powder, J. Inst. Eng. (India): Ser. A, 99 (2018) 103–111.
- C.D.G. Sampaio, J.G.A.E. Silva, E.S. De Brito, H. Becker,
M.T.S. Trevisan, R.W. Owen, Chromium(VI) remediation in
aqueous solution by waste products (peel and seed) of mango
(Mangifera indica L.) cultivars, Environ. Sci. Pollut. Res.,
26 (2019) 5588–5600.
- A. ul Haq, M. Saeed, M. Usman, M. Yameen, M. Muneer,
S. Tubbsum, A comparative sorption study of Cr3+ and Cr6+
using mango peels: kinetic, equilibrium and thermodynamic,
Green Process. Synth., 8 (2019) 337–347.
- M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive
capacity and investigation of mechanism of Cu2+, Ni2+ and
Zn2+ adsorption on mango peel waste from constituted
metal solution and genuine electroplating effluent, Sep. Sci.
Technol., 44 (2009) 3770–3791.
- M. Das, C. Mishra, Jackfruit leaf as an adsorbent of Malachite
green: recovery and reuse of the dye, SN Appl. Sci., 1 (2019)
483, doi: 10.1007/s42452-019-0459-7.
- M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, Jackfruit seed as lowcost
adsorbent for removal of Malachite green: artificial neural
network and random forest approaches, Environ. Earth Sci.,
77 (2018) 434, doi: 10.1007/s12665-018-7618-9.
- M.K. Abid, H.B. Ibrahim, S.Z. Zulkifli, Synthesis and
characterization of biochar from peel and seed of jackfruit
plant waste for the adsorption of copper metal ion from water,
Res. J. Pharm. Technol., 12 (2019) 4182–4188.
- M. Thomas, S.P. Patel, A.V. Patel, J.V. Patel, A comparative
study on the efficiency of KOH and H3PO4 impregnated
jackfruit leaf based carbon as adsorbent for removal of
Cr(VI) from its aqueous solution, Int. J. Eng. Trends Technol.,
45 (2017) 176.
- S. Ranasinghe, A. Navaratne, N. Priyantha, Enhancement
of adsorption characteristics of Cr(III) and Ni(II) by surface
modification of jackfruit peel biosorbent, J. Environ. Chem.
Eng., 6 (2018) 5670–5682.
- F.A. Ugbe, P.O. Anebi, V.A. Ikudayisi, Biosorption of an
anionic dye, Eosin yellow onto pineapple peels: isotherm and
thermodynamic study, Int. Ann. Sci., 4 (2018) 14–19.
- N. Selvanathan, N.S. Subki, Dye adsorbent by pineapple
activated carbon: H3PO4 and NaOH activation, ARPN J.
Eng. Appl. Sci., 10 (2015) 9476–9480.
- H. Dai, H. Huang, Modified pineapple peel cellulose
hydrogels embedded with sepia ink for effective removal of
Methylene blue, Carbohydr. Polym., 148 (2016) 1–10.
- H. Dai, Y. Huang, Y. Zhang, H. Zhang, H. Huang, Green
and facile fabrication of pineapple peel cellulose/magnetic
diatomite hydrogels in ionic liquid for Methylene blue
adsorption, Cellulose, 26 (2019) 3825–3844.
- H. Dai, Y. Huang, H. Zhang, L. Ma, H. Huang, J. Wu,
Y. Zhang, Direct fabrication of hierarchically processed
pineapple peel hydrogels for efficient Congo red adsorption,
Carbohydr. Polym., 230 (2020) 115599, doi: 10.1016/j.
carbpol.2019.115599.
- C. Wang, L. Gu, X. Liu, X. Zhang, L. Cao, X. Hu, Sorption
behavior of Cr(VI) on pineapple-peel-derived biochar and the
influence of coexisting pyrene, Int. Biodeterior. Biodegrad.,
111 (2016) 78–84.
- J. Ponou, J. Kim, L.P. Wang, G. Dodbiba, T. Fujita, Sorption of
Cr(VI) anions in aqueous solution using carbonized or dried
pineapple leaves, Chem. Eng. J., 172 (2011) 906–913.
- M.A. Ahmad, R. Alrozi, Optimization of rambutan peel
based activated carbon preparation conditions for Remazol
brilliant blue R removal, Chem. Eng. J., 168 (2011) 280–285.
- R. Alrozi, N.A. Zamanhuri, M.S. Osman, Adsorption of
Reactive Dye Remazol brilliant blue R from Aqueous Solutions
by Rambutan Peel, 2012 IEEE Symposium on Humanities,
Science and Engineering Research, IEEE, Kuala Lumpur,
Malaysia, 2012.
- V. Njoku, K. Foo, M. Asif, B. Hameed, Preparation of activated
carbons from rambutan (Nephelium lappaceum) peel by
microwave-induced KOH activation for Acid yellow 17 dye
adsorption, Chem. Eng. J., 250 (2014) 198–204.
- H.-J. Lee, S.-T. Ong, Immobilization of rambutan (Nephelium
lappaceum) peel as a sorbent for Basic Fuchsin removal,
Environ. Prot. Eng., 43 (2017) 169–181.
- M.A. Ahmad, N.S. Afandi, K.A. Adegoke, O.S. Bello,
Optimization and batch studies on adsorption of Malachite
green dye using rambutan seed activated carbon, Desal.
Water Treat., 57 (2016) 21487–21511.
- M. Selvanathan, K.T. Yann, C.H. Chung, A. Selvarajoo,
S.K. Arumugasamy, V. Sethu, Adsorption of copper(II) ion
from aqueous solution using biochar derived from rambutan
(Nephelium lappaceum) peel: feed forward neural network
modelling study, Water Air Soil Pollut., 228 (2017) 299,
doi: 10.1007/s11270-017-3472-8.
- K. Foo, B. Hameed, Factors affecting the carbon yield and
adsorption capability of the mangosteen peel activated carbon
prepared by microwave assisted K2CO3 activation, Chem.
Eng. J., 180 (2012) 66–74.
- M.A. Ahmad, R. Alrozi, Optimization of preparation
conditions for mangosteen peel-based activated carbons
for the removal of Remazol brilliant blue R using response
surface methodology, Chem. Eng. J., 165 (2010) 883–890.
- R. Singh, P.V. Nidheesh, T. Sivasankar, Integrating ultrasound
with activated carbon prepared from mangosteen fruit peel
for Reactive black 5 removal, Environ. Eng. Manage. J., 18
(2019) 2335–2342.
- K. Huang, Y. Xiu, H. Zhu, Selective removal of Cr(VI) from
aqueous solution by adsorption on mangosteen peel, Environ.
Sci. Pollut. Res., 20 (2013) 5930–5938.
- R. Zein, R. Suhaili, F. Earnestly, E. Munaf, Removal of Pb(II),
Cd(II) and Co(II) from aqueous solution using Garcinia
mangostana L. fruit shell, J. Hazard. Mater., 181 (2010)
52–56.
- S.B. Thomas, A. Ramakrishnan, Pomegranate peel-a low cost
adsorbent for the removal of cationic dyes from waste water,
Baselius Res., 18 (2017) 260–269.
- F. Gündüz, B. Bayrak, Biosorption of Malachite green from
an aqueous solution using pomegranate peel: equilibrium
modelling, kinetic and thermodynamic studies, J. Mol. Liq.,
243 (2017) 790–798.
- F.A. Salam, A. Narayanan, Biosorption-a case study of
hexavalent chromium removal with raw pomegranate peel,
Desal. Water Treat., 156 (2019) 278–291.
- S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni,
Characterization and adsorption capacity of raw pomegranate
peel biosorbent for copper removal, J. Cleaner Prod., 142
(2017) 3809–3821.
- M. Ghaneian, A. Bhatnagar, M. Ehrampoush, M. Amrollahi,
B. Jamshidi, M. Dehvari, M. Taghavi, Biosorption of hexavalent
chromium from aqueous solution onto pomegranate seeds:
kinetic modeling studies, Int. J. Environ. Sci. Technol.,
14 (2017) 331–340.
- M.E.M. Ali, H. Abdelsalam, N.S. Ammar, H.S. Ibrahim,
Response surface methodology for optimization of the
adsorption capability of ball-milled pomegranate peel for
different pollutants, J. Mol. Liq., 250 (2018) 433–445.
- M. Abedi, M. Salmani, S. Mozaffari, Adsorption of Cd ions
from aqueous solutions by iron modified pomegranate peel
carbons: kinetic and thermodynamic studies, Int. J. Environ.
Sci. Technol., 13 (2016) 2045–2056.
- M. Pitrat, Melon, J. Prohens, F. Nuez, Eds., Vegetables I,
Springer, New York, NY, 2008, pp. 283–315.
- C. Djelloul, O. Hamdaoui, Removal of cationic dye from
aqueous solution using melon peel as nonconventional
low-cost sorbent, Desal. Water Treat., 52 (2014) 7701–7710.
- A. Giwa, A. Olajire, D. Adeoye, T. Ajibola, Kinetics and
thermodynamics of ternary dye system adsorption on to
melon (Citrillus lanatus) seed husk, Chem. Sci. Int. J., 1 (2015)
7–25.
- K. Foo, B. Hameed, Preparation and characterization of
activated carbon from melon (Citrullus vulgaris) seed hull by
microwave-induced NaOH activation, Desal. Water Treat.,
47 (2012) 130–138.
- N.O. Daniel, E.S. Chima, M.T. Chinedu, Comparative study
of the bioadsorbtion of cadmium and lead from industrial
waste water using melon (Citrullus colocynthis) husk activated
with sulphuric acid, Am. J. Environ. Prot., 1 (2014) 1–8.
- R. Lakshmipathy, N. Sarada, Adsorptive removal of basic
cationic dyes from aqueous solution by chemically protonated
watermelon (Citrullus lanatus) rind biomass, Desal. Water
Treat., 52 (2014) 6175–6184.
- R. Lakshmipathy, N. Sarada, Methylene blue adsorption onto
native watermelon rind: batch and fixed bed column studies,
Desal. Water Treat., 57 (2016) 10632–10645.
- E.C. Chigbundu, K.O. Adebowale, Equilibrium and fractallike
kinetic studies of the sorption of acid and basic dyes
onto watermelon shell (Citrullus vulgaris), Cellulose, 24 (2017)
4701–4714.
- K. Banerjee, S. Ramesh, R. Gandhimathi, P. Nidheesh,
K. Bharathi, A novel agricultural waste adsorbent, watermelon
shell for the removal of copper from aqueous solutions,
Iran. J. Energy Environ., 3 (2012) 143–156.
- M.B. Shakoor, N.K. Niazi, I. Bibi, M. Shahid, F. Sharif,
S. Bashir, S.M. Shaheen, H. Wang, D.C. Tsang, Y.S. Ok, Arsenic
removal by natural and chemically modified water melon rind
in aqueous solutions and groundwater, Sci. Total Environ.,
645 (2018) 1444–1455.
- H. Li, J. Xiong, T. Xiao, J. Long, Q. Wang, K. Li, X. Liu,
G. Zhang, H. Zhang, Biochar derived from watermelon rinds
as regenerable adsorbent for efficient removal of thallium(I)
from wastewater, Process Saf. Environ. Prot., 127 (2019) 257–266.
- R. Lakshmipathy, N. Sarada, Application of watermelon rind
as sorbent for removal of nickel and cobalt from aqueous
solution, Int. J. Miner. Process., 122 (2013) 63–65.
- M.M. Ali, N. Hashim, S. Abd Aziz, O. Lasekan, Exploring
the chemical composition, emerging applications, potential
uses, and health benefits of Durian: a review, Food Control,
113 (2020) 107189, doi: 10.1016/j.foodcont.2020.107189.
- K.R. Thines, E. Abdullah, M. Ruthiraan, N.M. Mubarak,
Production of magnetic biochar derived from durian’s rind at
vacuum condition for removal of Methylene blue pigments
from aqueous solution, Int. J. Chem. Eng. IJCE, 14 (2015) 15.
- A. Kurniawan, V.O.A. Sisnandy, K. Trilestari, J. Sunarso,
N. Indraswati, S. Ismadji, Performance of durian shell waste
as high capacity biosorbent for Cr(VI) removal from synthetic
wastewater, Ecol. Eng., 37 (2011) 940–947.
- L. Laysandra, F.H. Santosa, V. Austen, F.E. Soetaredjo,
K. Foe, J.N. Putro, Y.-H. Ju, S. Ismadji, Rarasaponin-bentoniteactivated
biochar from durian shells composite for removal
of Crystal violet and Cr(VI) from aqueous solution, Environ.
Sci. Pollut. Res., 25 (2018) 30680–30695.
- L.G. Bach, D.V.N. Vo, N.D. Trinh, V.T.T. Ho, V.T. Tran,
Removal of Cu2+ from aqueous water by adsorption onto the
efficient and recyclable durian shell-derived activated carbon,
Appl. Mech. Mater., 876 (2018) 46–51.
- M. Ngabura, S.A. Hussain, W.A.W. Ghani, M.S. Jami, Y.P. Tan,
Utilization of renewable durian peels for biosorption of zinc
from wastewater, J. Environ. Chem. Eng., 6 (2018) 2528–2539.
- M. Ngabura, S.A. Hussain, W.A.W. Ghani, M.S. Jami, Y.P. Tan,
Optimization and activation of renewable durian husk for
biosorption of lead(II) from an aqueous medium, J. Chem.
Technol. Biotechnol., 94 (2019) 1384–1396.
- M.S. Najafinejad, P. Mohammadi, M.M. Afsahi, H. Sheibani,
Green synthesis of the Fe3O4@polythiophen-Ag magnetic
nanocatalyst using grapefruit peel extract: application of the
catalyst for reduction of organic dyes in water, J. Mol. Liq.,
262 (2018) 248–254.
- S. Inkoua, H.L. Maloko, M.M. Koko, L. Yan, Facile
solvothermal synthesis of Fe3O4/magnetic grapefruit peel for
adsorptive removal of Congo red, humic acid and phosphate
from aqueous solutions, Mater. Express, 10 (2020) 37–44.
- W. Zou, S. Gao, X. Zou, H. Bai, Adsorption of Neutral red
and Malachite green onto grapefruit peel in single and binary
systems, Water Environ. Res., 85 (2013) 466–477.
- W. Zhang, J. Song, Q. He, H. Wang, W. Lyu, H. Feng,
W. Xiong, W. Guo, J. Wu, L. Chen, Novel pectin based
composite hydrogel derived from grapefruit peel for
enhanced Cu(II) removal, J. Hazard. Mater., 384 (2020) 121445,
doi: 10.1016/j.jhazmat.2019.121445.