References

  1. C. Bhattacharjee, S. Dutta, V.K. Saxena, A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent, Environ. Adv., 2 (2020) 100007,
    doi: 10.1016/j.envadv.2020.100007.
  2. S. Mishra, L. Cheng, A. Maiti, The utilization of agro-biomass/ by-products for effective bio-removal of dyes from dyeing wastewater: a comprehensive review, J. Environ. Chem. Eng., 9 (2021) 104901,
    doi: 10.1016/j.jece.2020.104901.
  3. S. Afroze, T.K. Sen, A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Water Air Soil Pollut., 229 (2018) 225, doi: 10.1007/ s11270-018-3869-z.
  4. R. Chakraborty, A. Asthana, A.K. Singh, B. Jain, A.B.H. Susan, Adsorption of heavy metal ions by various low-cost adsorbents: a review, Int. J. Environ. Anal. Chem., (2020) 1–38, doi: 10.1080/03067319.2020.1722811.
  5. O. Abdelwahab, N. Amin, E.Z. El-Ashtoukhy, Removal of zinc ions from aqueous solution using a cation exchange resin, Chem. Eng. Res. Des., 91 (2013) 165–173.
  6. M. Urgun-Demirtas, P.L. Benda, P.S. Gillenwater, M.C. Negri, H. Xiong, S.W. Snyder, Achieving very low mercury levels in refinery wastewater by membrane filtration, J. Hazard. Mater., 215 (2012) 98–107.
  7. B. Yasemin, B. Zubeyde, Removal of Pb(II) from wastewater using wheat bran, J. Environ. Manage., 78 (2006) 107–113.
  8. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  9. Z. Carmen, S. Daniela, Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures From Industrial Effluents – A Critical Overview, T. Puzyn, A. Mostrag-Szlichtyng, Eds., Organic Pollutants Ten Years After the STOCKHOLM Convention-Environmental and Analytical Update, InTechOpen, Rijeka, Croatia, 2012, doi: 10.5772/32373.
  10. K.G. Pavithra, V. Jaikumar, Removal of colorants from wastewater: a review on sources and treatment strategies, J. Ind. Eng. Chem., 75 (2019) 1–19.
  11. D. Rama Devi, G. Srinivasan, S. Kothandaraman, S. Ashok Kumar, State-of-the-Art Review—Methods of Chromium Removal from Water and Wastewater, Sustainable Practices and Innovations in Civil Engineering, Springer, Singapore, 2020, pp. 37–51.
  12. S.S. Beulah, K. Muthukumaran, Methodologies of removal of dyes from wastewater: a review, Int. Res. J. Pure Appl. Chem., 21 (2020) 68–78.
  13. S. Martini, M. Setiawati, Technology for treating oily wastewater derived from various industries: a review paper, Chemica: Jurnal Teknik Kimia, 7 (2021) 106–116.
  14. S. Tamjidi, H. Esmaeili, Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr(III) removal from water, Chem. Eng. Technol., 42 (2019) 607–616.
  15. I.A. El Gheriany, F.A. El Saqa, A.A.E.R. Amer, M. Hussein, Oil spill sorption capacity of raw and thermally modified orange peel waste, Alexandria Eng. J., 59 (2020) 925–932.
  16. T. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of Methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata, Water Air Soil Pollut., 218 (2011) 499–515.
  17. M.T. Yagub, T.K. Sen, H. Ang, Equilibrium, kinetics, and thermodynamics of Methylene blue adsorption by pine tree leaves, Water Air Soil Pollut., 223 (2012) 5267–5282.
  18. M. Rauf, M. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  19. M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Textile finishing dyes and their impact on aquatic environs, Heliyon, 5 (2019) e02711, doi: 10.1016/j. heliyon.2019.e02711.
  20. F.I. Khan, S. Abbasi, Techniques and methodologies for risk analysis in chemical process industries, J. Loss Prev. Process Ind., 11 (1998) 261–277.
  21. E. Guerra, M. Llompart, C. Garcia-Jares, Analysis of dyes in cosmetics: challenges and recent developments, Cosmetics, 5 (2018) 47, doi: 10.3390/cosmetics5030047.
  22. A. Mosbah, H. Chouchane, S. Abdelwahed, A. Redissi, M. Hamdi, S. Kouidhi, M. Neifar, A. Slaheddine Masmoudi, A. Cherif, W. Mnif, Peptides fixing industrial textile dyes: a new biochemical method in wastewater treatment, J. Chem., 2019 (2019) 5081807, doi: 10.1155/2019/5081807.
  23. P. Semeraro, V. Rizzi, P. Fini, S. Matera, P. Cosma, E. Franco, R. García, M. Ferrándiz, E. Núñez, J.A. Gabaldón, Interaction between industrial textile dyes and cyclodextrins, Dyes Pigm., 119 (2015) 84–94.
  24. R. Bushra, S. Mohamad, Y. Alias, Y. Jin, M. Ahmad, Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: a review, Microporous Mesoporous Mater., 319 (2021) 111040, doi: 10.1016/j.micromeso.2021.111040.
  25. C. Antuña-Nieto, E. Rodríguez, M.A. Lopez-Anton, R. García, M.R. Martínez-Tarazona, Noble metal-based sorbents: a way to avoid new waste after mercury removal, J. Hazard. Mater., 400 (2020) 123168, doi: 10.1016/j.jhazmat.2020.123168.
  26. F. Di Natale, A. Lancia, A. Molino, M. Di Natale, D. Karatza, D. Musmarra, Capture of mercury ions by natural and industrial materials, J. Hazard. Mater., 132 (2006) 220–225.
  27. I.B. Rae, S.W. Gibb, S. Lu, Biosorption of Hg from aqueous solutions by crab carapace, J. Hazard. Mater., 164 (2009) 1601–1604.
  28. K. Low, C. Lee, S. Liew, Sorption of cadmium and lead from aqueous solutions by spent grain, Process Biochem., 36 (2000) 59–64.
  29. M.A. Assi, M.N.M. Hezmee, A.W. Haron, M.Y.M. Sabri, M.A. Rajion, The detrimental effects of lead on human and animal health, Vet. World, 9 (2016) 660–671.
  30. P. Mishra, R. Patel, Removal of lead and zinc ions from water by low cost adsorbents, J. Hazard. Mater., 168 (2009) 319–325.
  31. Y. Wang, D.C. Tsang, Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents, J. Environ. Sci., 25 (2013) 2291–2298.
  32. H. Timalsina, B. Mainali, M.J. Angove, T. Komai, S.R. Paudel, Potential modification of groundwater arsenic removal filter commonly used in Nepal: a review, Groundwater Sustainable Dev., 12 (2021) 100549, doi: 10.1016/j.gsd.2021.100549.
  33. P. Mondal, C. Majumder, B. Mohanty, Laboratory based approaches for arsenic remediation from contaminated water: recent developments, J. Hazard. Mater., 137 (2006) 464–479.
  34. D.S. Tavares, C.B. Lopes, J.P. Coelho, M.E. Sánchez, A.I. Garcia, A.C. Duarte, M. Otero, E. Pereira, Removal of arsenic from aqueous solutions by sorption onto sewage sludge-based sorbent, Water Air Soil Pollut., 223 (2012) 2311–2321.
  35. C.B. Tabelin, T. Igarashi, M. Villacorte-Tabelin, I. Park, E.M. Opiso, M. Ito, N. Hiroyoshi, Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: a review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies, Sci. Total Environ., 645 (2018) 1522–1553.
  36. C.-S. Zhu, L.-P. Wang, W.-B. Chen, Removal of Cu(II) from aqueous solution by agricultural by-product: peanut hull, J. Hazard. Mater., 168 (2009) 739–746.
  37. F.-L. Mi, S.-J. Wu, F.-M. Lin, Adsorption of copper(II) ions by a chitosan–oxalate complex biosorbent, Int. J. Biol. Macromol., 72 (2015) 136–144.
  38. F. Qi, D. Lamb, R. Naidu, N.S. Bolan, Y. Yan, Y.S. Ok, M.M. Rahman, G. Choppala, Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar, Sci. Total Environ., 610 (2018) 1457–1466.
  39. M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as lowcost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res., 50 (2011) 13589–13613.
  40. N. Kazakis, N. Kantiranis, K. Kalaitzidou, E. Kaprara, M. Mitrakas, R. Frei, G. Vargemezis, D. Vogiatzis,
    A. Zouboulis, A. Filippidis, Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece), Environ. Pollut., 235 (2018) 632–641.
  41. S.S. Kerur, S. Bandekar, M.S. Hanagadakar, S.S. Nandi, G.M. Ratnamala, P.G. Hegde, Removal of hexavalent chromium-industry treated water and wastewater: a review, Mater. Today:. Proc., 42 (2021) 1112–1121.
  42. H. Es-Sahbany, M. Berradi, S. Nkhili, R. Hsissou, M. Allaoui, M. Loutfi, D. Bassir, M. Belfaquir, M.S. El Youbi, Removal of heavy metals (nickel) contained in wastewater-models by the adsorption technique on natural clay, Mater. Today:. Proc., 13 (2019) 866–875.
  43. Y. Hannachi, N.A. Shapovalov, A. Hannachi, Adsorption of nickel from aqueous solution by the use of low-cost adsorbents, Korean J. Chem. Eng., 27 (2010) 152–158.
  44. E. Bibaj, K. Lysigaki, J. Nolan, M. Seyedsalehi, E. Deliyanni, A. Mitropoulos, G. Kyzas, Activated carbons from banana peels for the removal of nickel ions, Int. J. Environ. Sci. Technol., 16 (2019) 667–680.
  45. A. Hawari, Z. Rawajfih, N. Nsour, Equilibrium and thermodynamic analysis of zinc ions adsorption by olive oil mill solid residues, J. Hazard. Mater., 168 (2009) 1284–1289.
  46. O.B. Akpor, G.O. Ohiobor, D. Olaolu, Heavy metal pollutants in wastewater effluents: sources, effects and remediation, Adv. Biosci. Bioeng., 2 (2014) 37–43.
  47. N.P. Cheremisinoff, Handbook of Water and Wastewater Treatment Technologies, Butterworth-Heinemann, United States of America, 2001.
  48. C. Yang, W. Xu, Y. Nan, Y. Wang, Y. Hu, C. Gao, X. Chen, Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal, J. Colloid Interface Sci., 562 (2020) 589–597.
  49. X. Liu, B. Jiang, X. Yin, H. Ma, B.S. Hsiao, Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions, Sep. Purif. Technol., 233 (2020) 115976,
    doi: 10.1016/j.seppur.2019.115976.
  50. S. Martini, K.A. Roni, The existing technology and the application of digital artificial intelligent in the wastewater treatment area: a review paper, J. Phys.: Conf. Ser., 1858 (2021) 012013.
  51. T.A. Saleh, V.K. Gupta, Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications, Elsevier, Netherlands, 2016.
  52. I.A. Khan, Y.-S. Lee, J.-O. Kim, A comparison of variations in blocking mechanisms of membrane-fouling models for estimating flux during water treatment, Chemosphere, 259 (2020) 127328,
    doi: 10.1016/j.chemosphere.2020.127328.
  53. D. al deen Atallah Aljuboury, F. Shaik, Assessment of TiO2/ZnO/H2O2 photocatalyst to treat wastewater from oil refinery within visible light circumstances, S. Afr. J. Chem. Eng., 35 (2021) 69–77.
  54. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery, Catal. Today, 53 (1999) 51–59.
  55. J.M. Ochando-Pulido, M.D. Victor-Ortega, G. Hodaifa, A. Martinez-Ferez, Physicochemical analysis and adequation of olive oil mill wastewater after advanced oxidation process for reclamation by pressure-driven membrane technology, Sci. Total Environ., 503–504 (2015) 113–121.
  56. J.A. Garrido-Cardenas, B. Esteban-García, A. Agüera, J.A. Sánchez-Pérez, F. Manzano-Agugliaro, Wastewater treatment by advanced oxidation process and their worldwide research trends, Int. J. Environ. Res. Public Health, 17 (2020) 170, doi: 10.3390/ijerph17010170.
  57. S. Martini, H.T. Znad, H.M. Ang, Photo-Assisted Fenton Process for the Treatment of Canola Oil Effluent, Chemeca 2014: Processing Excellence; Powering Our Future, Engineers Australia, Barton, ACT, Australia, 2014.
  58. M. Tariq, M. Muhammad, J. Khan, A. Raziq, M.K. Uddin, A. Niaz, S.S. Ahmed, A. Rahim, Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst, J. Mol. Liq., 312 (2020) 113399, doi: 10.1016/j.molliq.2020.113399.
  59. A. Jamil, T.H. Bokhari, T. Javed, R. Mustafa, M. Sajid, S. Noreen, M. Zuber, A. Nazir, M. Iqbal, M.I. Jilani, Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization, J. Mater. Res. Technol., 9 (2020) 1119–1128.
  60. M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination, 280 (2011) 1–13.
  61. H. Xu, B. Yang, Y. Liu, F. Li, X. Song, X. Cao, W. Sand, Evolution of microbial populations and impacts of microbial activity in the anaerobic-oxic-settling-anaerobic process for simultaneous sludge reduction and dyeing wastewater treatment, J. Cleaner Prod., 282 (2021) 124403, doi: 10.1016/j. jclepro.2020.124403.
  62. Y.L. Pang, A.Z. Abdullah, Current status of textile industry wastewater management and research progress in Malaysia: a review, Clean–Soil Air Water, 41 (2013) 751–764.
  63. S. Mishra, A. Maiti, Biological Methodologies for Treatment of Textile Wastewater, R. Singh, P. Shukla, P. Singh, Eds., Environmental Processes and Management, Water Science and Technology Library, Vol. 91, Springer, Cham, 2020.
  64. M. Gómez-Ramírez, S.A. Tenorio-Sánchez, Treatment of Solid Waste Containing Metals by Biological Methods, E.R. Rhodes, H. Naser, Eds., Natural Resources Management and Biological Sciences, IntechOpen, 2020, doi: 10.5772/intechopen.92211.
  65. M. Venegas, A.M. Leiva, C. Reyes-Contreras, P. Neumann, B. Piña, G. Vidal, Presence and fate of micropollutants during anaerobic digestion of sewage and their implications for the circular economy: a short review, J. Environ. Chem. Eng., 9 (2021) 104931, doi:10.1016/j.jece.2020.104931.
  66. C. Zhao, J. Zhou, Y. Yan, L. Yang, G. Xing, H. Li, P. Wu, M. Wang, H. Zheng, Application of coagulation/flocculation in oily wastewater treatment: a review, Sci. Total Environ., 765 (2020) 142795, doi:10.1016/j.scitotenv.2020.142795.
  67. J.E. Drinan, F. Spellman, Water and Wastewater Treatment: A Guide for the Nonengineering Professional, 2nd ed., CRC Press, United States of America, 2012.
  68. T.A. Kurniawan, G.Y. Chan, W.-H. Lo, S. Babel, Physico– chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118 (2006) 83–98.
  69. N.U. Barambu, M.R. Bilad, M.A. Bustam, K.A. Kurnia, M.H.D. Othman, N.A.H.M. Nordin, Development of membrane material for oily wastewater treatment: a review, Ain Shams Eng. J., 12 (2021) 1361–1374.
  70. S. Martini, E. Yuliwati, Membrane development and its hybrid application for oily wastewater treatment: a review, J. Appl. Membr. Sci. Technol., 25 (2020) 57–71.
  71. S. Martini, H.M. Ang, Hybrid TiO2/UV/PVDF ultrafiltration membrane for raw canola oil wastewater treatment, Desal. Water Treat., 148 (2019) 51–59.
  72. O. Khalifa, F. Banat, C. Srinivasakannan, F. AlMarzooqi, S.W. Hasan, Ozonation-assisted electro-membrane hybrid reactor for oily wastewater treatment: a methodological approach and synergy effects, J. Cleaner Prod., 289 (2020) 125764, doi: 10.1016/j.jclepro.2020.125764.
  73. M. Sri, A.H. Ming, Z. Hussein, Integrated ultrafiltration membrane unit for efficient petroleum refinery effluent treatment, CLEAN – Soil Air Water, 45 (2017) 1600342, doi: 10.1002/clen.201600342.
  74. M.N. Rashed, Photocatalytic Degradation of Divalent Metals Under Sunlight Irradiation Using Nanoparticle TiO2 Modified Concrete Materials (Recycled Glass Cullet), M. Baawain, B. Choudri, M. Ahmed, A. Purnama, Eds., Recent Progress in Desalination, Environmental and Marine Outfall Systems, Springer, Cham, 2015, pp. 93–108.
  75. M. Chen, W. Ding, J. Wang, G. Diao, Removal of azo dyes from water by combined techniques of adsorption, desorption, and electrolysis based on a supramolecular sorbent, Ind. Eng. Chem. Res., 52 (2013) 2403–2411.
  76. A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed, A.A. Nada, Efficiently activated carbons from corn cob for Methylene blue adsorption, Appl. Surf. Sci. Adv., 3 (2021) 100037, doi: 10.1016/j. apsadv.2020.100037.
  77. B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review, J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j. jaap.2021.105081.
  78. M. Bilal, J.A. Shah, T. Ashfaq, S.M.H. Gardazi, A.A. Tahir, A. Pervez, H. Haroon, Q. Mahmood, Waste biomass adsorbents for copper removal from industrial wastewater—a review, J. Hazard. Mater., 263 (2013) 322–333.
  79. Y. Li, J. Liu, Q. Yuan, H. Tang, F. Yu, X. Lv, A green adsorbent derived from banana peel for highly effective removal of heavy metal ions from water, RSC Adv., 6 (2016) 45041–45048.
  80. K. Huang, Y. Xiu, H. Zhu, Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp, Desal. Water Treat., 52 (2014) 7108–7116.
  81. E. Rosales, J. Meijide, T. Tavares, M. Pazos, M. Sanromán, Grapefruit peelings as a promising biosorbent for the removal of leather dyes and hexavalent chromium, Process Saf. Environ. Prot., 101 (2016) 61–71.
  82. S.D. Devasangeeth, G. Balaji, R. Lakshmipathy, Multi metal ion sorption capacity of watermelon rind extract capped ZnS nanoparticles, Int. J. Pure Appl. Math., 118 (2018) 1–12.
  83. B. Volesky, Biosorption and me, Water Res., 41 (2007) 4017–4029.
  84. F. Veglio, F. Beolchini, Removal of metals by biosorption: a review, Hydrometallurgy, 44 (1997) 301–316.
  85. K. Vijayaraghavan, R. Balasubramanian, Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions, J. Environ. Manage., 160 (2015) 283–296.
  86. S. Srivastava, P. Goyal, Novel Biomaterials: Decontamination of Toxic Metals from Wastewater, Springer Science & Business Media, Germany, 2010.
  87. L.B. Escudero, P.Y. Quintas, R.G. Wuilloud, G.L. Dotto, Recent advances on elemental biosorption, Environ. Chem. Lett., 17 (2019) 409–427.
  88. D.F. Mohamad, N.S. Osman, M.K.H.M. Nazri, A.A. Mazlan, M.F. Hanafi, Y.A.M. Esa, M.I.I.M. Rafi, M.N. Zailani, N.N. Rahman, A.H.A. Rahman, N. Sapawe, Synthesis of mesoporous silica nanoparticle from banana peel ash for removal of phenol and methyl orange in aqueous solution, Mater. Today:. Proc., 19 (2019) 1119–1125.
  89. S. Pavithra, T. Gomathi, S. Sugashini, P.N. Sudha, H.H. Alkhamis, A.F. Alrefaei, M.H. Almutairi, Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr(VI) and Cu(II) ions from synthetic wastewater, Chemosphere, 271 (2021) 129415, doi:10.1016/j.chemosphere.2020.129415.
  90. A. Agarwal, U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel, A review on valorization of biomass in heavy metal removal from wastewater, J. Water Process Eng., 38 (2020) 101602, doi: 10.1016/j.jwpe.2020.101602.
  91. M. Om Prakash, G. Raghavendra, S. Ojha, M. Panchal, Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method, Mater. Today:. Proc., 39 (2020), doi:10.1016/j.matpr.2020.05.370.
  92. Y. Tang, T. Lin, C. Jiang, Y. Zhao, S. Ai, Renewable adsorbents from carboxylate-modified agro-forestry residues for efficient removal of Methylene blue dye, J. Phys. Chem. Solids, 149 (2021) 109811, doi:10.1016/j.jpcs.2020.109811.
  93. H. Karimi, M.A. Heidari, H.B.M. Emrooz, M. Shokouhimehr, Carbonization temperature effects on adsorption performance of metal-organic framework derived nanoporous carbon for removal of Methylene blue from wastewater; experimental and spectrometry study, Diamond Relat. Mater., 108 (2020) 107999, doi:10.1016/j.diamond.2020.107999.
  94. M.A. Ahsan, S.K. Katla, M.T. Islam, J.A. Hernandez-Viezcas, L.M. Martinez, C.A. Díaz-Moreno, J. Lopez, S.R. Singamaneni, J. Banuelos, J. Gardea-Torresdey, Adsorptive removal of Methylene blue, tetracycline and Cr(VI) from water using sulfonated tea waste, Environ. Technol. Innovation, 11 (2018) 23–40.
  95. S. Dawood, T. Sen, C. Phan, Synthesis and characterisation of novel-activated carbon from waste biomass pine cone and its application in the removal of Congo red dye from aqueous solution by adsorption, Water Air Soil Pollut., 225 (2013) 1–16.
  96. M. Dubinin, L. Radushkevich, Evaluation of microporous material with a new isotherm, Dokl Akad Nauk SSSR, (1966) 331–347.
  97. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817, doi: 10.1155/2017/3039817.
  98. M.A. Ahsan, S.K. Katla, M.T. Islam, J.A. Hernandez-Viezcas, L.M. Martinez, C.A. Díaz-Moreno, J. Lopez,
    S.R. Singamaneni, J. Banuelos, J. Gardea-Torresdey, J.C. Noveron, Adsorptive removal of Methylene blue, tetracycline and Cr(VI) from water using sulfonated tea waste, Environ. Technol. Innovation, 11 (2018) 23–40.
  99. S.Y. Lagergren, Zur Theorie der sogenannten Adsorption gelöster Stoffe, 1898.
  100. B.K. Nandi, A. Goswami, M.K. Purkait, Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies, Appl. Clay Sci., 42 (2009) 583–590.
  101. T.K. Sen, M.V. Sarzali, Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): a kinetic and equilibrium study, Chem. Eng. J., 142 (2008) 256–262.
  102. A. El Shahawy, G. Heikal, Organic pollutants removal from oily wastewater using clean technology economically, friendly biosorbent (Phragmites australis), Ecol. Eng., 122 (2018) 207–218.
  103. G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange adsorption of ions from aqueous solutions by organic zeolites. 11. Kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  104. A. Wilczak, T.M. Keinath, Kinetics of sorption and desorption of copper(II) and lead(II) on activated carbon, Water Environ. Res., 65 (1993) 238–244.
  105. S. Afroze, T.K. Sen, M. Ang, H. Nishioka, Adsorption of Methylene blue dye from aqueous solution by novel biomass Eucalyptus sheathiana bark: equilibrium, kinetics, thermodynamics and mechanism, Desal. Water Treat., 57 (2015) 5858–5878.
  106. S. Martini, S. Afroze, K. Ahmad Roni, Modified eucalyptus bark as a sorbent for simultaneous removal of COD, oil, and Cr(III) from industrial wastewater, Alexandria Eng. J., 59 (2020) 1637–1648.
  107. S. Tamjidi, B.K. Moghadas, H. Esmaeili, F.S. Khoo, G. Gholami, M. Ghasemi, Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: a review study, Process Saf. Environ. Prot., 148 (2021) 775–795.
  108. M. Ajmal, R.A.K. Rao, R. Ahmad, J. Ahmad, Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater, J. Hazard. Mater., 79 (2000) 117–131.
  109. J.K. Bediako, S. Lin, A.K. Sarkar, Y. Zhao, J.-W. Choi, M.-H. Song, C.-W. Cho, Y.-S. Yun, Evaluation of orange peelderived activated carbons for treatment of dye-contaminated wastewater tailings, Environ. Sci. Pollut. Res., 27 (2020) 1053–1068.
  110. F. Çatlıoğlu, S. Akay, B. Gözmen, E. Turunc, I. Anastopoulos, B. Kayan, D. Kalderis, Fe-modified hydrochar from orange peel as adsorbent of food colorant Brilliant black: process optimization and kinetic studies, Int. J. Environ. Sci. Technol., 17 (2019) 1975–1990.
  111. V.S. Munagapati, D.-S. Kim, Adsorption of anionic azo dye Congo red from aqueous solution by cationic modified orange peel powder, J. Mol. Liq., 220 (2016) 540–548.
  112. V.S. Munagapati, J.-C. Wen, C.-L. Pan, Y. Gutha, J.-H. Wen, Enhanced adsorption performance of Reactive red 120 azo dye from aqueous solution using quaternary amine modified orange peel powder, J. Mol. Liq., 285 (2019) 375–385.
  113. K. Al-Azabi, S. Al-Marog, A. Abukrain, M. Sulyman, Equilibrium, isotherm studies of dye adsorption onto orange peel powder, Chem. Res. J., 3 (2018) 45–59.
  114. S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, H.A. Chase, Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, J. Cleaner Prod., 162 (2017) 1376–1387.
  115. E. Safari, N. Rahemi, D. Kahforoushan, S. Allahyari, Copper adsorptive removal from aqueous solution by orange peel residue carbon nanoparticles synthesized by combustion method using response surface methodology, J. Environ. Chem. Eng., 7 (2019) 102847, doi: 10.1016/j.jece.2018.102847.
  116. S. Guiza, Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel, Ecol. Eng., 99 (2017) 134–140.
  117. A. Bhatnagar, M. Sillanpää, A. Witek-Krowiak, Agricultural waste peels as versatile biomass for water purification – a review, Chem. Eng. J., 270 (2015) 244–271.
  118. A.A. Abu Bakar, W.N.R. Wan Mazlan, N.A. Akbar, S. Badrealam, K.A. Muhammad Ali, Agriculture waste from banana peel as low cost adsorbent in treating Methylene blue from batik textile waste water effluents, J. Phys.: Conf. Ser., 1349 (2019) 012078.
  119. P. Zhang, D.O’Connor, Y. Wang, L. Jiang, T. Xia, L. Wang, D.C. Tsang, Y.S. Ok, D. Hou, A green biochar/iron oxide composite for Methylene blue removal, J. Hazard. Mater., 384 (2020) 121286, doi: 10.1016/j.jhazmat.2019.121286.
  120. V.S. Munagapati, J.-C. Wen, C.-L. Pan, Y. Gutha, J.-H. Wen, G.M. Reddy, Adsorptive removal of anionic dye (Reactive black 5) from aqueous solution using chemically modified banana peel powder: kinetic, isotherm, thermodynamic, and reusability studies, Int. J. Phytorem., 22 (2019) 267–278.
  121. A.A. Oyekanmi, A. Ahmad, K. Hossain, M. Rafatullah, Adsorption of Rhodamine B dye from aqueous solution onto acid treated banana peel: response surface methodology, kinetics and isotherm studies, PLoS One, 14 (2019), doi: 10.1371/journal.pone.0216878.
  122. A. Ashraf, I. Bibi, N.K. Niazi, Y.S. Ok, G. Murtaza, M. Shahid, A. Kunhikrishnan, D. Li, T. Mahmood, Chromium(VI) sorption efficiency of acid-activated banana peel over organomontmorillonite in aqueous solutions, Int. J. Phytorem., 19 (2017) 605–613.
  123. A. Ali, K. Saeed, F. Mabood, Removal of chromium(VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent, Alexandria Eng. J., 55 (2016) 2933–2942.
  124. S. Mirta, E. Baldwin, Mango, Book Chapter, USDA Agricultural Research Service, U.S. Department of Agriculture, 1997. Available from: https://www.ars.usda.gov/ research/publications/publication/?seqNo115=88473
  125. P. Sudamalla, P. Saravanan, M. Matheswaran, Optimization of operating parameters using response surface methodology for adsorption of Crystal violet by activated carbon prepared from mango kernel, Environ. Res., 22 (2012) 1–7.
  126. S. Shoukat, H.N. Bhatti, M. Iqbal, S. Noreen, Mango stone biocomposite preparation and application for Crystal violet adsorption: a mechanistic study, Microporous Mesoporous Mater., 239 (2017) 180–189.
  127. M.M. Dávila-Jiménez, M.P. Elizalde-González, V. Hernández- Montoya, Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions, Bioresour. Technol., 100 (2009) 6199–6206.
  128. A.H. Jawad, N.H. Mamat, M.F. Abdullah, K. Ismail, Adsorption of Methylene blue onto acid-treated mango peels: kinetic, equilibrium and thermodynamic study, Desal. Water Treat., 59 (2017) 210–219.
  129. D. Singh, V. Sowmya, S. Abinandan, S. Shanthakumar, Removal of Malachite green dye by Mangifera indica seed kernel powder, J. Inst. Eng. (India): Ser. A, 99 (2018) 103–111.
  130. C.D.G. Sampaio, J.G.A.E. Silva, E.S. De Brito, H. Becker, M.T.S. Trevisan, R.W. Owen, Chromium(VI) remediation in aqueous solution by waste products (peel and seed) of mango (Mangifera indica L.) cultivars, Environ. Sci. Pollut. Res., 26 (2019) 5588–5600.
  131. A. ul Haq, M. Saeed, M. Usman, M. Yameen, M. Muneer, S. Tubbsum, A comparative sorption study of Cr3+ and Cr6+ using mango peels: kinetic, equilibrium and thermodynamic, Green Process. Synth., 8 (2019) 337–347.
  132. M. Iqbal, A. Saeed, I. Kalim, Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+ and Zn2+ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent, Sep. Sci. Technol., 44 (2009) 3770–3791.
  133. M. Das, C. Mishra, Jackfruit leaf as an adsorbent of Malachite green: recovery and reuse of the dye, SN Appl. Sci., 1 (2019) 483, doi: 10.1007/s42452-019-0459-7.
  134. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, Jackfruit seed as lowcost adsorbent for removal of Malachite green: artificial neural network and random forest approaches, Environ. Earth Sci., 77 (2018) 434, doi: 10.1007/s12665-018-7618-9.
  135. M.K. Abid, H.B. Ibrahim, S.Z. Zulkifli, Synthesis and characterization of biochar from peel and seed of jackfruit plant waste for the adsorption of copper metal ion from water, Res. J. Pharm. Technol., 12 (2019) 4182–4188.
  136. M. Thomas, S.P. Patel, A.V. Patel, J.V. Patel, A comparative study on the efficiency of KOH and H3PO4 impregnated jackfruit leaf based carbon as adsorbent for removal of Cr(VI) from its aqueous solution, Int. J. Eng. Trends Technol., 45 (2017) 176.
  137. S. Ranasinghe, A. Navaratne, N. Priyantha, Enhancement of adsorption characteristics of Cr(III) and Ni(II) by surface modification of jackfruit peel biosorbent, J. Environ. Chem. Eng., 6 (2018) 5670–5682.
  138. F.A. Ugbe, P.O. Anebi, V.A. Ikudayisi, Biosorption of an anionic dye, Eosin yellow onto pineapple peels: isotherm and thermodynamic study, Int. Ann. Sci., 4 (2018) 14–19.
  139. N. Selvanathan, N.S. Subki, Dye adsorbent by pineapple activated carbon: H3PO4 and NaOH activation, ARPN J. Eng. Appl. Sci., 10 (2015) 9476–9480.
  140. H. Dai, H. Huang, Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of Methylene blue, Carbohydr. Polym., 148 (2016) 1–10.
  141. H. Dai, Y. Huang, Y. Zhang, H. Zhang, H. Huang, Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for Methylene blue adsorption, Cellulose, 26 (2019) 3825–3844.
  142. H. Dai, Y. Huang, H. Zhang, L. Ma, H. Huang, J. Wu, Y. Zhang, Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption, Carbohydr. Polym., 230 (2020) 115599, doi: 10.1016/j. carbpol.2019.115599.
  143. C. Wang, L. Gu, X. Liu, X. Zhang, L. Cao, X. Hu, Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene, Int. Biodeterior. Biodegrad., 111 (2016) 78–84.
  144. J. Ponou, J. Kim, L.P. Wang, G. Dodbiba, T. Fujita, Sorption of Cr(VI) anions in aqueous solution using carbonized or dried pineapple leaves, Chem. Eng. J., 172 (2011) 906–913.
  145. M.A. Ahmad, R. Alrozi, Optimization of rambutan peel based activated carbon preparation conditions for Remazol brilliant blue R removal, Chem. Eng. J., 168 (2011) 280–285.
  146. R. Alrozi, N.A. Zamanhuri, M.S. Osman, Adsorption of Reactive Dye Remazol brilliant blue R from Aqueous Solutions by Rambutan Peel, 2012 IEEE Symposium on Humanities, Science and Engineering Research, IEEE, Kuala Lumpur, Malaysia, 2012.
  147. V. Njoku, K. Foo, M. Asif, B. Hameed, Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for Acid yellow 17 dye adsorption, Chem. Eng. J., 250 (2014) 198–204.
  148. H.-J. Lee, S.-T. Ong, Immobilization of rambutan (Nephelium lappaceum) peel as a sorbent for Basic Fuchsin removal, Environ. Prot. Eng., 43 (2017) 169–181.
  149. M.A. Ahmad, N.S. Afandi, K.A. Adegoke, O.S. Bello, Optimization and batch studies on adsorption of Malachite green dye using rambutan seed activated carbon, Desal. Water Treat., 57 (2016) 21487–21511.
  150. M. Selvanathan, K.T. Yann, C.H. Chung, A. Selvarajoo, S.K. Arumugasamy, V. Sethu, Adsorption of copper(II) ion from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel: feed forward neural network modelling study, Water Air Soil Pollut., 228 (2017) 299, doi: 10.1007/s11270-017-3472-8.
  151. K. Foo, B. Hameed, Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation, Chem. Eng. J., 180 (2012) 66–74.
  152. M.A. Ahmad, R. Alrozi, Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol brilliant blue R using response surface methodology, Chem. Eng. J., 165 (2010) 883–890.
  153. R. Singh, P.V. Nidheesh, T. Sivasankar, Integrating ultrasound with activated carbon prepared from mangosteen fruit peel for Reactive black 5 removal, Environ. Eng. Manage. J., 18 (2019) 2335–2342.
  154. K. Huang, Y. Xiu, H. Zhu, Selective removal of Cr(VI) from aqueous solution by adsorption on mangosteen peel, Environ. Sci. Pollut. Res., 20 (2013) 5930–5938.
  155. R. Zein, R. Suhaili, F. Earnestly, E. Munaf, Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell, J. Hazard. Mater., 181 (2010) 52–56.
  156. S.B. Thomas, A. Ramakrishnan, Pomegranate peel-a low cost adsorbent for the removal of cationic dyes from waste water, Baselius Res., 18 (2017) 260–269.
  157. F. Gündüz, B. Bayrak, Biosorption of Malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies, J. Mol. Liq., 243 (2017) 790–798.
  158. F.A. Salam, A. Narayanan, Biosorption-a case study of hexavalent chromium removal with raw pomegranate peel, Desal. Water Treat., 156 (2019) 278–291.
  159. S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, J. Cleaner Prod., 142 (2017) 3809–3821.
  160. M. Ghaneian, A. Bhatnagar, M. Ehrampoush, M. Amrollahi, B. Jamshidi, M. Dehvari, M. Taghavi, Biosorption of hexavalent chromium from aqueous solution onto pomegranate seeds: kinetic modeling studies, Int. J. Environ. Sci. Technol., 14 (2017) 331–340.
  161. M.E.M. Ali, H. Abdelsalam, N.S. Ammar, H.S. Ibrahim, Response surface methodology for optimization of the adsorption capability of ball-milled pomegranate peel for different pollutants, J. Mol. Liq., 250 (2018) 433–445.
  162. M. Abedi, M. Salmani, S. Mozaffari, Adsorption of Cd ions from aqueous solutions by iron modified pomegranate peel carbons: kinetic and thermodynamic studies, Int. J. Environ. Sci. Technol., 13 (2016) 2045–2056.
  163. M. Pitrat, Melon, J. Prohens, F. Nuez, Eds., Vegetables I, Springer, New York, NY, 2008, pp. 283–315.
  164. C. Djelloul, O. Hamdaoui, Removal of cationic dye from aqueous solution using melon peel as nonconventional low-cost sorbent, Desal. Water Treat., 52 (2014) 7701–7710.
  165. A. Giwa, A. Olajire, D. Adeoye, T. Ajibola, Kinetics and thermodynamics of ternary dye system adsorption on to melon (Citrillus lanatus) seed husk, Chem. Sci. Int. J., 1 (2015) 7–25.
  166. K. Foo, B. Hameed, Preparation and characterization of activated carbon from melon (Citrullus vulgaris) seed hull by microwave-induced NaOH activation, Desal. Water Treat., 47 (2012) 130–138.
  167. N.O. Daniel, E.S. Chima, M.T. Chinedu, Comparative study of the bioadsorbtion of cadmium and lead from industrial waste water using melon (Citrullus colocynthis) husk activated with sulphuric acid, Am. J. Environ. Prot., 1 (2014) 1–8.
  168. R. Lakshmipathy, N. Sarada, Adsorptive removal of basic cationic dyes from aqueous solution by chemically protonated watermelon (Citrullus lanatus) rind biomass, Desal. Water Treat., 52 (2014) 6175–6184.
  169. R. Lakshmipathy, N. Sarada, Methylene blue adsorption onto native watermelon rind: batch and fixed bed column studies, Desal. Water Treat., 57 (2016) 10632–10645.
  170. E.C. Chigbundu, K.O. Adebowale, Equilibrium and fractallike kinetic studies of the sorption of acid and basic dyes onto watermelon shell (Citrullus vulgaris), Cellulose, 24 (2017) 4701–4714.
  171. K. Banerjee, S. Ramesh, R. Gandhimathi, P. Nidheesh, K. Bharathi, A novel agricultural waste adsorbent, watermelon shell for the removal of copper from aqueous solutions, Iran. J. Energy Environ., 3 (2012) 143–156.
  172. M.B. Shakoor, N.K. Niazi, I. Bibi, M. Shahid, F. Sharif, S. Bashir, S.M. Shaheen, H. Wang, D.C. Tsang, Y.S. Ok, Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater, Sci. Total Environ., 645 (2018) 1444–1455.
  173. H. Li, J. Xiong, T. Xiao, J. Long, Q. Wang, K. Li, X. Liu, G. Zhang, H. Zhang, Biochar derived from watermelon rinds as regenerable adsorbent for efficient removal of thallium(I) from wastewater, Process Saf. Environ. Prot., 127 (2019) 257–266.
  174. R. Lakshmipathy, N. Sarada, Application of watermelon rind as sorbent for removal of nickel and cobalt from aqueous solution, Int. J. Miner. Process., 122 (2013) 63–65.
  175. M.M. Ali, N. Hashim, S. Abd Aziz, O. Lasekan, Exploring the chemical composition, emerging applications, potential uses, and health benefits of Durian: a review, Food Control, 113 (2020) 107189, doi: 10.1016/j.foodcont.2020.107189.
  176. K.R. Thines, E. Abdullah, M. Ruthiraan, N.M. Mubarak, Production of magnetic biochar derived from durian’s rind at vacuum condition for removal of Methylene blue pigments from aqueous solution, Int. J. Chem. Eng. IJCE, 14 (2015) 15.
  177. A. Kurniawan, V.O.A. Sisnandy, K. Trilestari, J. Sunarso, N. Indraswati, S. Ismadji, Performance of durian shell waste as high capacity biosorbent for Cr(VI) removal from synthetic wastewater, Ecol. Eng., 37 (2011) 940–947.
  178. L. Laysandra, F.H. Santosa, V. Austen, F.E. Soetaredjo, K. Foe, J.N. Putro, Y.-H. Ju, S. Ismadji, Rarasaponin-bentoniteactivated biochar from durian shells composite for removal of Crystal violet and Cr(VI) from aqueous solution, Environ. Sci. Pollut. Res., 25 (2018) 30680–30695.
  179. L.G. Bach, D.V.N. Vo, N.D. Trinh, V.T.T. Ho, V.T. Tran, Removal of Cu2+ from aqueous water by adsorption onto the efficient and recyclable durian shell-derived activated carbon, Appl. Mech. Mater., 876 (2018) 46–51.
  180. M. Ngabura, S.A. Hussain, W.A.W. Ghani, M.S. Jami, Y.P. Tan, Utilization of renewable durian peels for biosorption of zinc from wastewater, J. Environ. Chem. Eng., 6 (2018) 2528–2539.
  181. M. Ngabura, S.A. Hussain, W.A.W. Ghani, M.S. Jami, Y.P. Tan, Optimization and activation of renewable durian husk for biosorption of lead(II) from an aqueous medium, J. Chem. Technol. Biotechnol., 94 (2019) 1384–1396.
  182. M.S. Najafinejad, P. Mohammadi, M.M. Afsahi, H. Sheibani, Green synthesis of the Fe3O4@polythiophen-Ag magnetic nanocatalyst using grapefruit peel extract: application of the catalyst for reduction of organic dyes in water, J. Mol. Liq., 262 (2018) 248–254.
  183. S. Inkoua, H.L. Maloko, M.M. Koko, L. Yan, Facile solvothermal synthesis of Fe3O4/magnetic grapefruit peel for adsorptive removal of Congo red, humic acid and phosphate from aqueous solutions, Mater. Express, 10 (2020) 37–44.
  184. W. Zou, S. Gao, X. Zou, H. Bai, Adsorption of Neutral red and Malachite green onto grapefruit peel in single and binary systems, Water Environ. Res., 85 (2013) 466–477.
  185. W. Zhang, J. Song, Q. He, H. Wang, W. Lyu, H. Feng, W. Xiong, W. Guo, J. Wu, L. Chen, Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal, J. Hazard. Mater., 384 (2020) 121445, doi: 10.1016/j.jhazmat.2019.121445.