References

  1. Y. Xie, Y. Yu, L. Lu, X. Ma, L. Gong, X. Huang, G. Liu, Y. Yu, CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for Malathion detection, J. Electroanal. Chem., 812 (2018) 82–89.
  2. A. El Nemr, Stereoselective Synthesis of Hydantocidin Analogues, J.L. Vicario, D. Badía, L. Carrillo, Eds., New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles, Research Signpost, Transworld Research Network, Kerala, India, 2005, pp. 249–295.
  3. A. El Nemr, Ed., Impact, Monitoring and Management of Environmental Pollution, Nova Science Publishers, Inc., Hauppauge, New York, 2011.
  4. H.F. Asiri, A.M. Idris, T.O. Said, T. Sahlabji, M.M. Alghamdi, A.A. El-Zahhar, A. El Nemr, Monitoring and health risk assessment of some pesticides and organic pollutants in fruit and vegetables consumed in Asir Region, Saudi Arabia, Fresenius Environ. Bull., 29 (2020) 615–625.
  5. D. Guillén, A. Ginebreda, M. Farré, R.M. Darbra, M. Petrovic, M. Gros, D. Barceló, Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective, Sci. Total Environ., 440 (2012) 236–252.
  6. X. Wang, X. Lu, J. Chen, Development of biosensor technologies for analysis of environmental contaminants, Trends Environ. Anal. Chem., 2 (2014) 25–32.
  7. R. Ali, K. Richard, Z. Hussain, A. Tahira, S. Tufail, H. Sherazi, M. Willander, Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide, Electrochim. Acta, 190 (2016) 972–979.
  8. F.L. Migliorini, R.C. Sanfelice, L.A. Mercante, M.H.M. Facure, D.S. Correa, Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for Malathion pesticide detection, Mater. Res. Express, 7 (2019) 015601.
  9. A. El Nemr, M.M. El-Sadaawy, Polychlorinated biphenyl and organochlorine pesticide residues in surface sediments from the Mediterranean Sea (Egypt), Int. J. Sediment Res., 31 (2016) 44–52.
  10. A. El Nemr, G.F. El-Said, A. Khaled, Risk assessment of organochlorines in mollusk from the Mediterranean and Red Sea of Coasts (Egypt), Water Environ. Res., 88 (2016) 325–337.
  11. S. Ragab, A. El Sikaily, A. El Nemr, Concentrations and sources of pesticides and PCBs in surficial sediments of the Red Sea Coast, Egypt. J. Aquat. Res., 42 (2016) 365–374.
  12. D.M.S.A. Salem, A. El Sikaily, A. El Nemr, Organochlorines and their risk in marine shellfish collected from the Mediterranean coast, Egypt, Egypt. J. Aquat. Res., 40 (2014) 93–101.
  13. N. Kaur, H. Thakur, N. Prabhakar, Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of Malathion, Microchem. J., 147 (2019) 393–402.
  14. C.S. Kushwaha, S.K. Shukla, Non-enzymatic potentiometric Malathion sensing over chitosan-grafted polyaniline hybrid electrode, simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography, J. Mater. Sci., 54 (2019) 10846–10855.
  15. X. Wang, X. Qiao, Y. Ma, T. Zhao, Z. Xu, J. Agric, Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography, Food Chem., 61 (2013) 3821–3827.
  16. H.F.M. Asiri, A.M. Idris, T.O. Said, T. Sahlabji, M.M. Alghamdi, A.A. El-Zahhar, A. El Nemr, Monitoring and health risk assessment of some pesticides and organic pollutants in fruit and vegetables consumed in Asir Region, Saudi Arabia, Fresenius Environ. Bull., 29 (2020) 615–625.
  17. D.M.S. Salem, A. Khaled, A. El Nemr, Assessment of pesticides and polychlorinated biphenyls (PCBs) in sediments of the Egyptian Mediterranean Coast, Egypt. J. Aquat. Res., 39 (2013) 141–152.
  18. A. El Nemr, Ed., Impact, Monitoring and Management of Environmental Pollution, Nova Science Publishers, Inc., Hauppauge, New York, 2011.
  19. A. El Nemr, Ed., Environmental Pollution and its relation to Climate Change, Nova Science Publishers, Inc., Hauppauge, New York, 2012.
  20. A. El Nemr, Ed., Pollution Status, Environmental Protection, and Renewable Energy production in Marine Systems, Nova Science Publishers, Inc., Hauppauge, New York, 2016.
  21. A. El Nemr, A.A. Moneer, A. Khaled, A. El-Sikaily, Levels, distribution and risk assessment of organochlorines in surficial sediments of the Red Sea Coast, Egypt, Environ. Monit. Assess., 185 (2013) 4835–4853.
  22. M.A. Farajzadeh, M. Bahram, M.R. Vardast, M. Bamorowat, Dispersive liquid–liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography-ultraviolet detection and its optimization by experimental design, Microchim. Acta, 172 (2010) 465–470.
  23. C. Yang, R. Devasenathipathy, K. Kohila Rani, S. Wang, synthesis of multiwall carbon nanotubes covered copper oxide nanobarrier for senstive and selective electrochemical determination of hydrogen peroxide, Int. J. Electrochem. Sci., 12 (2017) 5910–5920.
  24. A. Khan, A.A.P. Khan, A.M. Asiri, K.A. Alamry, Preparation and characterization of hybrid graphene oxide composite and its application in paracetamol microbiosensor, Polym. Compos., 30 (2015) 221–228.
  25. A. Khan, A.A.P. Khan, M.M. Rahman, A.M. Asiri, K.A. Alamry, Preparation of polyaniline grafted graphene oxide-WO3 nanocomposite and its application as a chromium(III) chemisensor, RSC Adv., 5 (2015) 105169–105178.
  26. A. Khan, A.A. Parwaz Khan, A.M. Asiri, B.M. Abu-Zied, Green synthesis of thermally stable Ag-rGO-CNT nano composite with high sensing activity, Composites, Part B, 86 (2016) 27–35.
  27. A. Khan, A.A. Parwaz Khan, M.M. Rahman, A.M. Asiri, Inamuddin, K.A. Alamry, S.A. Hamed, Preparation and characterization of PANI@G/CWO nanocomposite for enhanced 2-nitrophenol sensing, Appl. Surf. Sci., 433 (2018) 696–704.
  28. A.A. Khan, U. Habiba, A. Khan, Synthesis and characterization of organic-inorganic nanocomposite poly-o-anisidine Sn(IV) arsenophosphate: its analytical applications as Pb(II) ion-selective membrane electrode, Int. J. Anal. Chem., 2009 (2009) 659215, doi: 10.1155/2009/659215.
  29. D. Huo, Q. Li, Y. Zhang, C. Hou, Y. Lei, A highly efficient organophosphorus pesticides sensor based on CuO nanowires– SWCNTs hybrid nanocomposite, Sens. Actuators, B, 199 (2014) 410–417.
  30. Q. Dong, H. Ryu, Y. Lei, Metal oxide based non-enzymatic electrochemical sensors for glucose detection, Electrochim. Acta, 370 (2021) 137744, doi: 10.1016/j.electacta.2021.137744.
  31. X. Zhou, X. Gu, Z. Chen, Y. Wu, W. Xu, J. Bao, A novel and sensitive Cu2ZnSnS4 quantum dot–based non–enzymatic glucose sensor, Sens. Actuators, B, 329 (2021) 129117, doi: 10.1016/j.snb.2020.129117.
  32. I.U. Hassan, H. Salim, G.A. Naikoo, T. Awan, R.A. Dar, F. Arshad, M.A. Tabidi, R. Das, W. Ahmed, A.M. Asiri, A.H. Qurashi, A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors, J. Saudi Chem. Soc., 25 (2021) 101228, doi: 10.1016/j. jscs.2021.101228.
  33. P. Yang, X. Wang, C.Y. Ge, X. Fu, X.Y. Liu, H. Chai, K. Chen, Fabrication of CuO nanosheets-built microtubes via Kirkendall effect for non-enzymatic glucose sensor, Appl. Surf. Sci., 494 (2019) 484–491.
  34. M. Sabbaghan, A.S. Shahvelayati, K. Madankar, Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates, Spectrochim. Acta, Part A, 135 (2015) 662–668.
  35. J. Yang, W. Tan, C. Chen, Y. Tao, Y. Qin, Y. Kong, Nonenzymatic glucose sensing by CuO nanoparticles decorated nitrogendoped graphene aerogel, Mater. Sci. Eng., C, 78 (2017) 210–217.
  36. D. Du, J. Ding, J. Cai, A. Zhang, One-step electrochemically deposited interface of chitosan–gold nanoparticles for acetylcholinesterase biosensor design, J. Electroanal. Chem., 605 (2007) 53–60.
  37. R.X. Zhang, P. Yang, Y.X. Zhang, A novel high-sensitivity nonenzymatic glucose sensor via Cu2O@CuO@NiCo2O4 nanowires as catalyst, Mater. Lett., 272 (2020) 127850, doi:10.1016/j.matlet.2020.127850.
  38. Y. Zheng, Z. Liu, Y. Jing, J. Li, H. Zhan, An acetylcholinesterase biosensor based on ionic liquid functionalized graphene–gelatin-modified electrode for sensitive detection of pesticides, Sens. Actuators, B, 210 (2015) 389–397.
  39. Y. Wang, S. Zhang, W. Bai, J. Zheng, Layer-by-layer assembly of copper nanoparticles and manganese
    dioxide-multiwalled carbon nanotubes film: a new nonenzymatic electrochemical sensor for glucose, Talanta, 149 (2016) 211–216.
  40. R.F. Gao, J.B. Zheng, Amine-terminated ionic liquid functionalized carbon nanotube-gold nano particles for investigating the direct electron transfer of glucose oxidase, Electrochem. Commun., 11 (2009) 608–611.
  41. R. Prasad, B.R. Bhat, Multi-wall carbon nanotube-NiO nanoparticle composite as enzyme-free electrochemical glucose sensor, Sens. Actuators, B, 220 (2015) 81–90.
  42. R. Sedghi, Z. Pezeshkian, Fabrication of non-enzymatic glucose sensor based on nanocomposite of
    MWCNTs-COOH-poly(2-aminothiophenol)-Au NPs, Sens. Actuators, B, 219 (2015) 119–124.
  43. Y. Zhang, E. Zhou, Y. Li, X. He, A novel nonenzymatic glucose sensor based on magnetic copper ferrite immobilized on multiwalled carbon nanotubes, Anal. Methods, 7 (2015) 2360–2366.
  44. A.C. De Sá, A. Cipri, A. González-Calabuig, N.R. Stradiotto, M. Del Valle, Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy-hydroxide/MWCNT modified electrodes, Sens. Actuators, B, 222 (2016) 645–653.
  45. K. Dhara, D.R. Mahapatra, Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection, Microchem. J., 156 (2020) 104857, doi: 10.1016/j. microc.2020.104857.
  46. C.-S. Liu, J. Li, H. Pang, Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing, Coord. Chem. Rev., 410 (2020) 213222, doi: 10.1016/j. ccr.2020.213222.
  47. A.S. Shamsabadi, H. Tavanai, M. Ranjbar, A. Farnood, M. Bazarganipour, Electrochemical non-enzymatic sensing of glucose by gold nanoparticles incorporated graphene nanofibers, Mater. Today Commun., 24 (2020) 100963, doi: 10.1016/j.mtcomm.2020.100963.
  48. R. Devasenathipathy, C. Karuppiah, S.M. Chen, S. Palanisamy, B.S. Lou, M.A. Ali, F.M.A. Al-Hemaid, A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine, RSC Adv., 5 (2015) 26762–26768.
  49. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, Carbon nanotube – a review on synthesis, properties and plethora of applications in the field of biomedical science, Sens. Int., 1 (2020) 100003.
  50. D. Huo, Q. Li, Y. Zhang, C. Hou, Y. Lei, A highly efficient organophosphorus pesticides sensor based on CuO nanowires– SWCNTs hybrid nanocomposite, Sens. Actuators, B, 199 (2014) 410–417.
  51. E. Serag, A. El Nemr, F.F. Abdel Hamid, S.A. Fathy, A. El-Maghraby, A novel three dimensional carbon nanotubepolyethylene glycol – polyvinyl alcohol nanocomposite for Cu(II) removal from water,Egypt. J. Aquat. Biol. Fish., 22 (2018) 103–118.
  52. S.A. Fathy, F.F. Abdel Hamid, A. El Nemr, A. El-Maghraby, E. Serag, Novel tyrosinase biosensor based on multiwall carbon nanotube – titanium oxide nanocomposite for catechol determination, Desal. Water Treat., 130 (2018) 98–108.
  53. A. El Nemr, E. Serag, A. El-Maghraby, S.A. Fathy, F.F.A. Hamid, Manufacturing of pH sensitive PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites: an approach for significant drug release, J. Macromol. Sci. A, 56 (2019) 781–793.
  54. D. Park, H. Ju, T. Oh, J. Kim, A p-type multi-wall carbon nanotube/Te nanorod composite with enhanced thermoelectric performance, RSC Adv., 8 (2018) 8739–8746.
  55. J. Ding, H. Zhang, F. Jia, W. Qin, D. Du, Assembly of carbon nanotubes on a nanoporous gold electrode for acetylcholinesterase biosensor design, Sens. Actuators, B, 199 (2014) 284–290.
  56. B.J. Yuan, R. Zhang, H. Zhang, X. Shi, Y. Guo, X. Guo, S. Guo, D. Cai, Zhang, Electrochemical and electrocatalytic properties of a stable Cu-based metal–organic framework, Int. J. Electrochem. Sci., 10 (2015) 4899–4910.
  57. Y. Xie, Y. Yu, L. Lu, X. Ma, L. Gong, X. Huang, G. Liu, Y. Yu, CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for Malathion detection, J. Electroanal. Chem., 812 (2018) 82–89.
  58. K. YunKyoung, C. Seungil, L. JunHo, H. Soon, Aerosol approach for hollow spheres of a porous 3D carbon nanotube/CuO network and their anodic properties for lithium-ion battery, J. Nanosci. Nanotechnol., 14 (2014) 9143–9147.
  59. B. Shaswat, C. Pronobesh, P. Mayur, K. Bolin, K. Niranjan, Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material, Mater. Res. Express., 1 (2014) 045402.
  60. M.M. Hussain, A.M. Asiri, M.M. Rahman, A non-enzymatic electrochemical approach for L-lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix, New J. Chem., 44 (2020) 9775–9787.
  61. A. Rwaida, A. Nehad, A. Mai, S. Ebtesam, M. Shaza, F. Nida. Nanoparticles based solid contact potentiometric sensor for the determination of theophylline in different types of tea extract, Inorg. Chem. Commun., 119 (2020) 108080.
  62. A.M. Al’Abri, S.N. Abdul Halim, N.K. Abu Bakar, S.M. Saharin, B. Sherino, H. Rashidi Nodeh, S. Mohamad, Highly sensitive and selective determination of Malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework, Environ. Sci. Health B, 54 (2019) 930–941.
  63. N. Chauhan, C.S. Pundir, An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides, Anal. Chim. Acta, 701 (2011) 66–74.
  64. G. Bolat, S. Abaci, Non-enzymatic electrochemical sensing of Malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite, Sensors, 18 (2018) 773, doi:10.3390/s18030773.
  65. T. Wang, R.C. Reid, S.D. Minteer, A paper-based mitochondrial electrochemical biosensor for pesticide detection, Electroanalysis, 28 (2016) 854–859.
  66. L. He, B. Cui, J. Liu, Y. Song, M. Wang, D. Peng, Z. Zhang, Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting Malathion, Sens. Actuators, B, 258 (2018) 813–821.