References

  1. C. Chaffei, K. Pageau, A. Suzuki, H. Gouia, M.H. Ghorbel, C. Masclaux-Daubresse, Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy, Plant Cell Physiol., 45 (2004) 1681–1693.
  2. J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg, A. Reich, The toxicity of cadmium and resulting hazards for human health, J. Occup. Med. Toxicol., 1 (2006) 22–22.
  3. L. Järup, A. Åkesson, Current status of cadmium as an environmental health problem, Toxicol. Appl. Pharmacol., 238 (2009) 201–208.
  4. R. Menhage-Bena, H. Kazemian, M. Ghazi-Khansari, M. Hosseini, S. Shahtaheri, Evaluation of some natural zeolites and their relevant synthetic types as sorbents for removal of arsenic from drinking water, Iran. J. Public Health, 33 (2004) 36–44.
  5. S. Shevade, R.G. Ford, Use of synthetic zeolites for arsenate removal from pollutant water, Water Res., 38 (2004) 3197–3204.
  6. V. Somerset, L. Petrik, E. Iwuoha, Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: the removal of mercury and lead ions from wastewater, J. Environ. Manage., 87 (2008) 125–131.
  7. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 33 (1999) 2469–2479.
  8. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  9. F.S. Zhang, J.O. Nriagu, H. Itoh, Mercury removal from water using activated carbons derived from organic sewage sludge, Water Res., 39 (2005) 389–395.
  10. V. Fthenakis, F. Lipfert, P. Moskowitz, L. Saroff, An assessment of mercury emissions and health risks from a coal-fired power plant, J. Hazard. Mater., 44 (1995) 267–283.
  11. T.T. Wałek, F. Saito, Q. Zhang, The effect of low solid/liquid ratio on hydrothermal synthesis of zeolites from fly ash, Fuel, 87 (2008) 3194–3199.
  12. U.K. Chowdhury, B.K. Biswas, T.R. Chowdhury, G. Samanta, B.K. Mandal, G.C. Basu, C.R. Chanda, D. Lodh, K.C. Saha, S.K. Mukherjee, S. Roy, S. Kabir, Q. Quamruzzaman, D. Chakraborti, Groundwater arsenic contamination in Bangladesh and West Bengal, India, Environ. Health Perspect., 108 (2000) 393–397.
  13. M. Vaclavikova, G.P. Gallios, S. Hredzak, S. Jakabsky, Removal of arsenic from water streams: an overview of available techniques, Clean Technol. Environ. Policy, 10 (2008) 89–95.
  14. Y.H. Xu, T. Nakajima, A. Ohki, Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasuzeolite, J. Hazard. Mater., 92 (2002) 275–287.
  15. S. Wang, Z. Zhu, Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution, J. Hazard. Mater., 136 (2006) 946–952.
  16. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  17. T. Robinson, G. Mcmullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol., 77 (2001) 247–255.
  18. S. Wang, M. Soudi, L. Li, Z. Zhu, Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater, J. Hazard. Mater., 133 (2006) 243–251.
  19. A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl orange from wastewaters using waste materials, J. Hazard. Mater., 148 (2007) 229–240.
  20. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of Methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.
  21. S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of Methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination, 252 (2010) 149–156.
  22. N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Toxicity assessment and microbial degradation of azo dyes, Indian J. Exp. Biol., 44 (2006) 618–626.
  23. M. Elizalde-Gonzalez, J. Mattusch, R. Wennrich, Application of natural zeolites for preconcentration of arsenic species in water samples, J. Environ. Monit., 3 (2001) 22–26.
  24. A. Nishino, Household appliances using catalysis, Catal. Today, 10 (1991) 107–118.
  25. A. Zorpas, T. Constantinides, A. Vlyssides, I. Haralambous, M. Loizidou, Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost, Bioresour. Technol., 72 (2000) 113–119.
  26. M. Elizalde-González, J. Mattusch, W.D. Einicke, R. Wennrich, Sorption on natural solids for arsenic removal, Chem. Eng. J., 81 (2001) 187–195.
  27. Y.H. Xu, T. Nakajima, A. Ohki, Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasuzeolite, J. Hazard. Mater., 92 (2002) 275–287.
  28. M.S. Onyango, D. Kuchar, M. Kubota, H. Matsuda, Adsorptive removal of phosphate ions from aqueous solution using synthetic zeolite, Ind. Eng. Chem. Res., 46 (2007) 894–900.
  29. A. Wight, M. Davis, Design and preparation of organicinorganic hybrid catalysts, Chem. Rev., 102 (2002) 3589–3614.
  30. B.Y.S. Al-Zaidi, The Effect of Modification Techniques on the Performance of Zeolite-Y Catalysts in Hydrocarbon Cracking Reactions, Thesis, University of Manchester, 2011.
  31. X. Li, E. Iglesia, Pt/[Fe] ZSM-5 modified by Na and Cs cations: an active and selective catalyst for dehydrogenation of n-alkanes to n-alkenes, Chem. Commun., 5 (2008) 594–596.
  32. L. Guczi, I. Kiricsi, Zeolite supported mono-and bimetallic systems: structure and performance as CO hydrogenation catalysts, Appl. Catal., A, 186 (1999) 375–394.
  33. J. Guzman, B.C. Gates, Supported molecular catalysts: metal complexes and clusters on oxides and zeolites, Dalton Trans., 17 (2003) 3303–3318.
  34. S. Recchia, C. Dossi, A. Fusi, L. Sordelli, R. Psaro, Zeolitesupported metals by design: organometallic-based tinpromoted rhodium/NaY catalysts, Appl. Catal., A, 182 (1999) 41–51.
  35. M. Hartmann, L. Kevan, Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis, Res. Chem. Intermed., 28 (2002) 625–695.
  36. F. Fan, Z. Feng, C. Li, UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials, Acc. Chem. Res., 43 (2009) 378–387.
  37. Y. Meng, H.C. Genuino, C.H. Kuo, H. Huang, S.Y. Chen, L. Zhang, A. Rossi, S.L. Suib, One-step hydrothermal synthesis of manganese-containing MFI-type zeolite, Mn–ZSM-5, characterization, and catalytic oxidation of hydrocarbons, J. Am. Chem. Soc., 135 (2013) 8594–8605.
  38. G.A. Eimer, L.B. Pierella, G.A. Monti, O.A. Anunziata, Synthesis and characterization of Al-MCM-41 and
    Al-MCM-48 mesoporous materials, Catal. Lett., 78 (2002) 65–75.
  39. G. Vitale, H. Molero, E. Hernandez, S. Aquino, V. Birss, P. Pereira-Almao, One-pot preparation and characterization of bifunctional Ni-containing ZSM-5 catalysts, Appl. Catal., A, 452 (2013) 75–87.
  40. E. Yuan, W. Han, G. Zhang, K. Zhao, Z. Mo, G. Lu, Z. Tang, Structural and textural characteristics of
    Zn-containing ZSM-5 zeolites and application for the selective catalytic reduction of NOx with NH3 at high temperatures, Catal. Surv. Asia, 20 (2016) 41–52.
  41. M.M. Forde, R.D. Armstrong, C. Hammond, Q. He, R.L. Jenkins, S.A. Kondrat, N. Dimitratos, J.A. Lopez-Sanchez, S.H. Taylor, D. Willock, C.J. Kiely, G.J. Hutchings, Partial oxidation of ethane to oxygenates using Fe- and
    Cu-containing ZSM-5, J. Am. Chem. Soc., 135 (2013) 11087–11099.
  42. G. Carja, G.Delahay, C. Signorile, B. Coq, Fe–Ce–ZSM-5 a new catalyst of outstanding properties in the selective catalytic reduction of NO with NH3, Chem. Commun., 12 (2004) 1404–1405.
  43. S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Effect of structural and preparation parameters on the activity and hydrothermal stability of metal-exchanged ZSM-5 in the selective catalytic reduction of NO by NH3, Ind. Eng. Chem. Res., 50 (2011) 4308–4319.
  44. O.D. Ozdemir, S. Pişkin, Zeolite X synthesis with different sources, Int. J. Chem. Environ. Biol. Sci., 1 (2013) 229–232.
  45. S. Özvatan, Y. YÜrÜm, Synthesis of crystalline ZSM-5 type zeolites utilizing primary monoalkylamines 1. Characterization, Energy Sources, 23 (2001) 475–485.
  46. K. Motazedi, Template-Free Synthesis and Modification of LTY, ZSM-5 and LTL Zeolite Catalysts and Investigation of the Catalytic Pyrolysis of Saskatchewan Boundary Dam Coal, Thesis, University of Calgary, 2013.
  47. W. Mozgawa, The influence of some heavy metals cations on the FTIR spectra of zeolites, J. Mol. Struct., 555 (2000) 299–304.
  48. R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization, Nanosci. Nanotechnol., 5 (2015) 1–6.
  49. S. Verma, S.L. Jain, Nanosized zinc peroxide (ZnO2): a novel inorganic oxidant for the oxidation of aromatic alcohols to carbonyl compounds, Inorg. Chem. Front., 7 (2014) 534–539.
  50. I. Markova-Deneva, Infrared spectroscopy investigation of metallic nanoparticles based on copper, cobalt, and nickel synthesized through borohydride reduction method, J. Univ. Chem. Technol. Metall., 45 (2010) 351–378.
  51. V. Parthasarathi, G. Thilagavathi, Synthesis and characterization of zinc oxide nanoparticle and its application on fabrics for microbe resistant defence clothing, J. Pharm. Pharm. Sci., 3 (2011) 392–398.
  52. G. Donny, Synthesis and Characterization of Cu/Ni-zeolites-A for the Direct Conversion of Methane to Liquid Hydrocarbon, Universiti Malaysia Pahang, Thesis, 2008.
  53. H. Kumar, R. Rani, Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route, Int. Lett. Chem. Phys. Astron., 19 (2013) 26–36.
  54. S. Cheng, D. Yan, J. Chen, R. Zhuo, J. Feng, H. Li, H.T. Feng, P.X. Yan, Soft-template synthesis and characterization of ZnO2 and ZnO hollow spheres, J. Phys. Chem. C, 113 (2009) 13630–13635.
  55. Y. Zhang, Y. Zhou, L. Huang, M. Xue, S. Zhang, Sn-modified ZSM-5 as support for platinum catalyst in propane dehydrogenation, Ind. Eng. Chem. Res., 50 (2011) 7896–7902.
  56. A. Hagen, K.H. Hallmeier, C. Hennig, R. Szargan, T. Inui, F. Roessner, State of zinc in MFI type zeolites characterized by XANES and EXAFS, Stud. Surf. Sci. Catal., 94 (1995) 195–202.
  57. B. Notari, Microporous crystalline titanium silicates, Adv. Catal., 41 (1996) 253–334.
  58. S. Srivastava, Synthesis and characterisation of copper oxide nanoparticles, IOSR J. Appl. Phys., 5 (2013) 61–65.
  59. K. Arun, A. Batra, A. Krishna, K. Bhat, M. Aggarwal, J. Francis, Surfactant free hydrothermal synthesis of copper oxide nanoparticles, Am. J. Mater. Sci., 5 (2015) 36–38.
  60. B.E. Alver, M. Sakizci, E. Yörükoğullari, Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study, J. Therm. Anal. Calorim., 100 (2010) 19–26.
  61. M. Sánchez, P. Gamero, D. Cortés, Bioactivity assessment of ZSM-5 type zeolite functionalized with silver or zinc, Mater. Lett., 74 (2012) 250–253.
  62. M. Hassani, G.D. Najafpour, M. Mohammadi, M. Rabiee, Preparation, characterization and application of zeolite-based catalyst for production of biodiesel from waste cooking oil, J. Sci. Ind. Res., 73 (2014) 129–133.
  63. K. Yamamoto, Y. Nohara, Y. Domon, Y. Takahashi, Y. Sakata, J. Plévert, T. Tatsumi, Organic–inorganic hybrid zeolites with framework organic groups, Chem. Mater., 17 (2005) 3913–3920.
  64. R.M.R. Kulkarni, G. Srinikethan, K. Vidyashetty, Equilibrium and kinetic studies for the adsorption of cadmium ion on zeolite 4A, J. Biochem. Technol., 3 (2014) 158–160.
  65. J. Aguado, D. Serrano, J. Escola, J. Rodríguez, Low temperature synthesis and properties of ZSM-5 aggregates formed by ultrasmall nanocrystals, Microporous Mesoporous Mater., 75 (2004) 41–49.
  66. I.L. Lagadic, M.K. Mitchell, B.D. Payne, Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay, Environ. Sci. Technol., 35 (2001) 984–990.