References
- V. Uberoi, S.K. Bhattacharya, Effects of chlorophenols and
nitrophenols on the kinetics of propionate degradation in
sulfate-reducing anaerobic systems, Environ. Sci. Technol.,
31 (1997) 1607–1614.
- Z.K. Xiong, H. Zhang, W.C. Zhang, B. Lai, G. Yao, Removal of
nitrophenols and their derivatives by chemical redox: a review,
Chem. Eng. J., 359 (2019) 13–31.
- R. Das, V.S. Sypu, H.K. Paumo, M. Bhaumik, V. Maharaj,
A. Maity, Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of
4-nitrophenol and toxic organic dyes, Appl. Catal., B, 244 (2018)
546–558.
- L.A. Frolova, O.V. Khmelenko, The study of Co–Ni-Mn ferrites
for the catalytic decomposition of 4-nitrophenol, Catal. Lett.,
151 (2021) 1522–1533.
- G.H. Cheng, W. Yu, C. Yang, S.Y. Li, X.Y. Wang, P.Y. Wang,
K.G. Zhang, X. Li, G.F. Zhu, Highly selective removal of
2,4‐dinitrophenol by a surface imprinted sol–gel polymer,
J. Appl. Polym. Sci., 137 (2020) 49236–49246.
- K. Shang, W.F. Li, X.J. Wang, N. Lu, N. Jiang, J.L. Li, Y. Wu,
Degradation of p-nitrophenol by DBD
plasma/Fe2+/persulfate
oxidation process, Sep. Purif. Technol., 218 (2019) 106–112.
- E.Y. Danish, H.M. Marwani, M.A. Alhazmi, Selectivity and
extraction efficiency studies of 4-nitrophenol adsorption on
polyethersulfones/Ag nanocomposite, Desal. Water Treat.,
67 (2017) 239–246.
- M. Zbair, Z. Anfar, H.A. Ahsaine, Reusable bentonite
clay: modelling and optimization of hazardous lead and
p-nitrophenol adsorption using a response surface methodology
approach, RSC Adv., 9 (2019) 5756–5769.
- A.A. Babaei, S.N. Alavi, M. Akbarifar, K. Ahmadi, A.R. Esfahani,
B. Kakavandi, Experimental and modeling study on
adsorption of cationic methylene blue dye onto mesoporous
biochars prepared from agrowaste, Desal. Water Treat.,
57 (2016) 27199–27212.
- A. Azari, B. Kakavandi, R.R. Kalantary, E. Ahmadi, M. Gholami,
Z. Torkshavand, M. Azizi, Rapid and efficient magnetically
removal of heavy metals by magnetite-activated carbon
composite: a statistical design approach, J. Porous Mater.,
22 (2015) 1–14.
- Y. Guo, M.M. Dai, Z.X. Zhu, Y.Q. Chen, H. He, T.H. Qin,
Chitosan modified Cu2O nanoparticles with high catalytic
activity for p-nitrophenol reduction, Appl. Surf. Sci., 480 (2019)
601–610.
- S.P. Sam, R. Adnan, S.L. Ng, Statistical optimization of
immobilization of activated sludge in PVA/alginate cryogel
beads using response surface methodology for p-nitrophenol
biodegradation, J. Water Process Eng., 39 (2020) 101725–101738.
- Y.Z. Zhou, T. Wang, D. Zhi, B.L. Guo, Applications of nanoscale
zero-valent iron and its composites to the removal of antibiotics:
a review, J. Mater. Sci., 54 (2019) 12171–12188.
- A.A. Babaei, A. Azari, R.R. Kalantary, B. Kakavandi, Enhanced
removal of nitrate from water using nZVI@MWCNTs composite:
synthesis, kinetics and mechanism of reduction, Water Sci.
Technol., 72 (2015) 1988–1999.
- S. Li, J.C. Tang, Q.L. Liu, X.M. Liu, B. Gao, A novel stabilized
carbon-coated nZVI as heterogeneous persulfate catalyst
for enhanced degradation of 4-chlorophenol, Environ. Int.,
138 (2020) 105639, doi:10.1016/j.envint.2020.105639.
- M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent
iron (nZVI): from synthesis to environmental applications,
Chem. Eng. J., 287 (2016) 618–632.
- M. Ahmadi, M. Foladivanda, N. Jaafarzadeh, Z. Ramezani,
B. Ramavandi, S. Jorfi, B. Kakavandi, Synthesis of chitosan zerovalent
iron nanoparticles-supported for cadmium removal:
characterization, optimization and modeling approach, J. Water
Supply Res. Technol. AQUA, 66 (2017) 116–130.
- A. Rostvall, W. Zhang, W.K. Dürig, G. Renman, K. Wiberg,
L. Ahrens, P. Gago-Ferrero, Removal of pharmaceuticals,
perfluoroalkyl substances and other micropollutants from
wastewater using lignite, Xylit, sand, granular activated
carbon (GAC) and GAC+Polonite® in column tests – role of
physicochemical properties, Water Res., 137 (2018) 97–106.
- A.A. Babaei, S.N. Alavi, M. Akbarifar, K. Ahmadi,
A.R. Esfahani, B. Kakavandi, Experimental and modeling
study on adsorption of cationic methylene blue dye onto
mesoporous biochars prepared from agrowaste, Desal. Water
Treat., 57 (2016) 27199–27212.
- M. Massoudinejad, A. Asadi, M. Vosoughi, M. Gholami,
B. Kakavandi, M.A. Karami, A comprehensive study (kinetic,
thermodynamic and equilibrium) of arsenic(V) adsorption
using KMnO4 modified clinoptilolite, Korean J. Chem. Eng.,
32 (2015) 2078–2086.
- Y.-H. Hwang, D.G. Kim, H.-S. Shin, Mechanism study of
nitrate reduction by nano zero-valent iron, J. Hazard. Mater.,
185 (2011) 1513–1521.
- T.A. Saleh, Simultaneous adsorptive desulfurization of diesel
fuel over bimetallic nanoparticles loaded on activated carbon,
J. Cleaner Prod., 172 (2017) 2123–2132.
- R.R. Pawar, Lalhmunsiama, M.N. Kim, J.-G. Kim, S.-M. Hong,
S.Y. Sawant, S.M. Lee, Efficient removal of hazardous lead,
cadmium, and arsenic from aqueous environment by iron oxide
modified clay-activated carbon composite beads, Appl. Clay
Sci., 162 (2018) 339–350.
- M. Kalaruban, P. Loganathan, T.V. Nguyen, T. Nur, Md
A.H. Johir, T.H. Nguyen, M.V. Trinh, S. Vigneswaran, Ironimpregnated
granular activated carbon for arsenic removal:
application to practical column filters, J. Environ. Manage.,
239 (2019) 235–243.
- Z.T. Li, L. Wang, J. Meng, X.M. Liu, J.M. Xu, F. Wang, P. Brookes,
Zeolite-supported nanoscale zero-valent iron: new findings
on simultaneous adsorption of Cd(II), Pb(II), and As(III) in
aqueous solution and soil, J. Hazard. Mater., 344 (2017) 1–11.
- X. Shang, L. Yang, D. Ouyang, B. Zhang, W.Y. Zhang, M.Y. Gu,
J. Li, M.F. Chen, L.H. Huang, L.B. Qian, Enhanced removal
of 1,2,4-trichlorobenzene by modified biochar supported
nanoscale zero-valent iron and palladium, Chemosphere,
249 (2020) 126518, doi: 10.1016/j.chemosphere.2020.126518.
- Y.C. Lv, S.Y. Huang, G.F. Huang, Y.F. Liu, G.F. Yang, C.X. Lin,
G. Xiao, Y.H. Wang, M.H. Liu, Remediation of organic arsenic
contaminants with heterogeneous Fenton process mediated by
SiO2-coated nano zero-valent iron, Environ. Sci. Pollut. Res.,
27 (2020) 12017–12029.
- D. Dong, R.K. Wang, P.F. Geng, C.X. Li, Z.H. Zhao, Enhancing
effects of activated carbon supported nano zero-valent iron on
anaerobic digestion of phenol-containing organic wastewater,
J. Environ. Manage., 244 (2019) 1–12.
- P.D. Mines, B. Uthuppu, D. Thirion, M.H. Jakobsen, C.T. Yavuz,
H.R. Andersen, Y. Hwang, granular activated carbon with
grafted nanoporous polymer enhances nanoscale zero-valent
iron impregnation and water contaminant removal, Chem.
Eng. J., 339 (2018) 22–31.
- J.S. Lee, W.Y. Choi, J.Y. Yoon, Photocatalytic degradation of
N-nitrosodimethylamine: mechanism, product distribution,
and TiO2 surface modification, Environ. Sci. Technol., 39 (2005)
6800–6807.
- Q.Q. Jin, S. Zhang, T. Wen, J. Wang, P.C. Gu, G.X. Zhao,
X.X. Wang, Z.S. Chen, T. Hayat, X.K. Wang, Simultaneous
adsorption and oxidative degradation of Bisphenol A by zerovalent
iron/iron carbide nanoparticles encapsulated in N-doped
carbon matrix, Environ. Pollut., 243 (2018) 218–227.
- H. Qiu, L. Lv, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang, Q.-X. Zhang,
Critical review in adsorption kinetic models, J. Zhejiang Univ.-
Sci. A, 5 (2009) 716–724.