References

  1. V. Uberoi, S.K. Bhattacharya, Effects of chlorophenols and nitrophenols on the kinetics of propionate degradation in sulfate-reducing anaerobic systems, Environ. Sci. Technol., 31 (1997) 1607–1614.
  2. Z.K. Xiong, H. Zhang, W.C. Zhang, B. Lai, G. Yao, Removal of nitrophenols and their derivatives by chemical redox: a review, Chem. Eng. J., 359 (2019) 13–31.
  3. R. Das, V.S. Sypu, H.K. Paumo, M. Bhaumik, V. Maharaj, A. Maity, Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes, Appl. Catal., B, 244 (2018) 546–558.
  4. L.A. Frolova, O.V. Khmelenko, The study of Co–Ni-Mn ferrites for the catalytic decomposition of 4-nitrophenol, Catal. Lett., 151 (2021) 1522–1533.
  5. G.H. Cheng, W. Yu, C. Yang, S.Y. Li, X.Y. Wang, P.Y. Wang, K.G. Zhang, X. Li, G.F. Zhu, Highly selective removal of 2,4‐dinitrophenol by a surface imprinted sol–gel polymer, J. Appl. Polym. Sci., 137 (2020) 49236–49246.
  6. K. Shang, W.F. Li, X.J. Wang, N. Lu, N. Jiang, J.L. Li, Y. Wu, Degradation of p-nitrophenol by DBD
    plasma/Fe2+/persulfate oxidation process, Sep. Purif. Technol., 218 (2019) 106–112.
  7. E.Y. Danish, H.M. Marwani, M.A. Alhazmi, Selectivity and extraction efficiency studies of 4-nitrophenol adsorption on polyethersulfones/Ag nanocomposite, Desal. Water Treat., 67 (2017) 239–246.
  8. M. Zbair, Z. Anfar, H.A. Ahsaine, Reusable bentonite clay: modelling and optimization of hazardous lead and
    p-nitrophenol adsorption using a response surface methodology approach, RSC Adv., 9 (2019) 5756–5769.
  9. A.A. Babaei, S.N. Alavi, M. Akbarifar, K. Ahmadi, A.R. Esfahani, B. Kakavandi, Experimental and modeling study on adsorption of cationic methylene blue dye onto mesoporous biochars prepared from agrowaste, Desal. Water Treat., 57 (2016) 27199–27212.
  10. A. Azari, B. Kakavandi, R.R. Kalantary, E. Ahmadi, M. Gholami, Z. Torkshavand, M. Azizi, Rapid and efficient magnetically removal of heavy metals by magnetite-activated carbon composite: a statistical design approach, J. Porous Mater., 22 (2015) 1–14.
  11. Y. Guo, M.M. Dai, Z.X. Zhu, Y.Q. Chen, H. He, T.H. Qin, Chitosan modified Cu2O nanoparticles with high catalytic activity for p-nitrophenol reduction, Appl. Surf. Sci., 480 (2019) 601–610.
  12. S.P. Sam, R. Adnan, S.L. Ng, Statistical optimization of immobilization of activated sludge in PVA/alginate cryogel beads using response surface methodology for p-nitrophenol biodegradation, J. Water Process Eng., 39 (2020) 101725–101738.
  13. Y.Z. Zhou, T. Wang, D. Zhi, B.L. Guo, Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review, J. Mater. Sci., 54 (2019) 12171–12188.
  14. A.A. Babaei, A. Azari, R.R. Kalantary, B. Kakavandi, Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction, Water Sci. Technol., 72 (2015) 1988–1999.
  15. S. Li, J.C. Tang, Q.L. Liu, X.M. Liu, B. Gao, A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol, Environ. Int., 138 (2020) 105639, doi:10.1016/j.envint.2020.105639.
  16. M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications, Chem. Eng. J., 287 (2016) 618–632.
  17. M. Ahmadi, M. Foladivanda, N. Jaafarzadeh, Z. Ramezani, B. Ramavandi, S. Jorfi, B. Kakavandi, Synthesis of chitosan zerovalent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach, J. Water Supply Res. Technol. AQUA, 66 (2017) 116–130.
  18. A. Rostvall, W. Zhang, W.K. Dürig, G. Renman, K. Wiberg, L. Ahrens, P. Gago-Ferrero, Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite® in column tests – role of physicochemical properties, Water Res., 137 (2018) 97–106.
  19. A.A. Babaei, S.N. Alavi, M. Akbarifar, K. Ahmadi, A.R. Esfahani, B. Kakavandi, Experimental and modeling study on adsorption of cationic methylene blue dye onto mesoporous biochars prepared from agrowaste, Desal. Water Treat., 57 (2016) 27199–27212.
  20. M. Massoudinejad, A. Asadi, M. Vosoughi, M. Gholami, B. Kakavandi, M.A. Karami, A comprehensive study (kinetic, thermodynamic and equilibrium) of arsenic(V) adsorption using KMnO4 modified clinoptilolite, Korean J. Chem. Eng., 32 (2015) 2078–2086.
  21. Y.-H. Hwang, D.G. Kim, H.-S. Shin, Mechanism study of nitrate reduction by nano zero-valent iron, J. Hazard. Mater., 185 (2011) 1513–1521.
  22. T.A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, J. Cleaner Prod., 172 (2017) 2123–2132.
  23. R.R. Pawar, Lalhmunsiama, M.N. Kim, J.-G. Kim, S.-M. Hong, S.Y. Sawant, S.M. Lee, Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads, Appl. Clay Sci., 162 (2018) 339–350.
  24. M. Kalaruban, P. Loganathan, T.V. Nguyen, T. Nur, Md A.H. Johir, T.H. Nguyen, M.V. Trinh, S. Vigneswaran, Ironimpregnated granular activated carbon for arsenic removal: application to practical column filters, J. Environ. Manage., 239 (2019) 235–243.
  25. Z.T. Li, L. Wang, J. Meng, X.M. Liu, J.M. Xu, F. Wang, P. Brookes, Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil, J. Hazard. Mater., 344 (2017) 1–11.
  26. X. Shang, L. Yang, D. Ouyang, B. Zhang, W.Y. Zhang, M.Y. Gu, J. Li, M.F. Chen, L.H. Huang, L.B. Qian, Enhanced removal of 1,2,4-trichlorobenzene by modified biochar supported nanoscale zero-valent iron and palladium, Chemosphere, 249 (2020) 126518, doi: 10.1016/j.chemosphere.2020.126518.
  27. Y.C. Lv, S.Y. Huang, G.F. Huang, Y.F. Liu, G.F. Yang, C.X. Lin, G. Xiao, Y.H. Wang, M.H. Liu, Remediation of organic arsenic contaminants with heterogeneous Fenton process mediated by SiO2-coated nano zero-valent iron, Environ. Sci. Pollut. Res., 27 (2020) 12017–12029.
  28. D. Dong, R.K. Wang, P.F. Geng, C.X. Li, Z.H. Zhao, Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater, J. Environ. Manage., 244 (2019) 1–12.
  29. P.D. Mines, B. Uthuppu, D. Thirion, M.H. Jakobsen, C.T. Yavuz, H.R. Andersen, Y. Hwang, granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal, Chem. Eng. J., 339 (2018) 22–31.
  30. J.S. Lee, W.Y. Choi, J.Y. Yoon, Photocatalytic degradation of N-nitrosodimethylamine: mechanism, product distribution, and TiO2 surface modification, Environ. Sci. Technol., 39 (2005) 6800–6807.
  31. Q.Q. Jin, S. Zhang, T. Wen, J. Wang, P.C. Gu, G.X. Zhao, X.X. Wang, Z.S. Chen, T. Hayat, X.K. Wang, Simultaneous adsorption and oxidative degradation of Bisphenol A by zerovalent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix, Environ. Pollut., 243 (2018) 218–227.
  32. H. Qiu, L. Lv, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang, Q.-X. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ.- Sci. A, 5 (2009) 716–724.