References
- A.F. Aravantinou, M.A. Theodorakopoulos, I.D. Manariotis,
Selection of microalgae for wastewater treatment and potential
lipids production, Bioresour. Technol., 147 (2013) 130–134.
- A.F. Aravantinou, E.F. Barkonikou, I.D. Manariotis, Microalgae
biomass and lipid production using primary treated wastewater,
Desal. Water Treat., 91 (2017) 228–234.
- V.R.V. Ashwaniy, M. Perumalsamy, S. Pandian, Enhancing
the synergistic interaction of microalgae and bacteria for the
reduction of organic compounds in petroleum refinery effluent,
Environ. Technol. Innovation, 19 (2020) 100926, doi: 10.1016/j.
eti.2020.100926.
- V.D. Tsavatopoulou, A.F. Aravantinou, I.D. Manariotis, Biofuel
conversion of Chlorococcum sp. and Scenedesmus sp. biomass
by one- and two-step transesterification, Biomass Convers.
Biorefin., 11 (2021) 1301–1309.
- K. Price, I.H. Farag, Resources conservation in microalgae
biodiesel production, Int. J. Eng. Technol. Res., 1 (2013) 49–56.
- M. Sakarika, M. Kornaros, Chlorella vulgaris as a green biofuel
factory: comparison between biodiesel, biogas and combustible
biomass production, Bioresour. Technol., 273 (2019) 237–243.
- E. Kaplan, N.A. Sayar, D. Kazan, A.A. Sayar, Assessment of
different carbon and salinity level on growth kinetics, lipid, and
starch composition of Chlorella vulgaris SAG 211-12, Int. J. Green
Energy, 17 (2020) 290–300.
- M.A. Islam, M. Magnusson, R.J. Brown, G.A. Ayoko,
M.N. Nabi, K. Heimann, Microalgal species selection for
biodiesel production based on fuel properties derived from
fatty acid profiles, Energies, 6 (2013) 5676–5702.
- S.M.U. Shah, A. Ahmad, M.F. Othman, M.A. Abdullah, Effects
of palm oil mill effluent media on cell growth and lipid content
of Nannochloropsis oculata and Tetraselmis suecica, Int. J. Green
Energy, 13 (2016) 200–207.
- S.-H. Ho, A. Nakanishi, X. Ye, J.-S. Chang, K. Hara, T. Hasunuma,
A. Kondo, Optimizing biodiesel production in marine
Chlamydomonas sp. JSC4 through metabolic profiling and an
innovative salinity-gradient strategy, Biotechnol. Biofuels,
7 (2014) 1–16, doi: 10.1186/1754-6834-7-97.
- G. Mujtaba, W. Choi, C.-G. Lee, K. Lee, Lipid production by
Chlorella vulgaris after a shift from nutrient-rich to nitrogen
starvation conditions, Bioresour. Technol., 123 (2012) 279–283.
- P. Asadi, H.A. Rad, F. Qaderi, Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy
wastewater treatment plant effluents, Environ. Sci. Pollut. Res.,
26 (2019) 29473–29489.
- M.M. Phukan, R.S. Chutia, B.K. Konwar, R. Kataki, Microalgae
Chlorella as a potential bio-energy feedstock, Appl. Energy,
88 (2011) 3307–3312.
- G. Zhao, X. Chen, L. Wang, S. Zhou, H. Feng, W.N. Chen,
R. Lau, Ultrasound assisted extraction of carbohydrates from
microalgae as feedstock for yeast fermentation, Bioresour.
Technol., 128 (2013) 337–344.
- P. Přibyl, V. Cepák, V. Zachleder, Production of lipids in
10 strains of Chlorella and parachlorella, and enhanced lipid
productivity in Chlorella vulgaris, Appl. Microbiol. Biotechnol.,
94 (2012) 549–561.
- R. Kakarla, J.W. Choi, J.H. Yun, B.H. Kim, J. Heo, S. Lee,
D.H. Cho, R. Ramanan, H.S. Kim, Application of highsalinity
stress for enhancing the lipid productivity of Chlorella
sorokiniana HS1 in a two-phase process, J. Microbiol., 56 (2018)
56–64.
- C.-J. Yun, K.-O. Hwang, S.-S. Han, H.-G. Ri, The effect of
salinity stress on the biofuel production potential of freshwater,
Biomass Bioenergy J., 127 (2019) 105277, doi: 10.1016/j.
biombioe.2019.105277.
- E. Ebrahimi, A. Salarzadeh, The effect of temperature and
salinity on the growth of Skeletonema costatum and Chlorella
capsulata in vitro, Int. J. Life Sci., 10 (2016) 40–44.
- J. Church, J.H. Hwang, K.T. Kim, R. McLean, Y.K. Oh, B. Nam,
J.C. Joo, W.H. Lee, Effect of salt type and concentration on
the growth and lipid content of Chlorella vulgaris in synthetic
saline wastewater for biofuel production, Bioresour. Technol.,
243 (2017) 147–153.
- A.F. Aravantinou, V. Tsarpali, S. Dailianis, I.D. Manariotis,
Effect of cultivation media on the toxicity of ZnO nanoparticles
to freshwater and marine microalgae, Ecotoxicol. Environ. Saf.,
114 (2015) 109–116.
- APHA, WEF, AWWA, Standard Methods for the Examination
of Water and Wastewater, 22nd ed., American Public Health
Assosiation, USA, 2012
- O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein
measurement with the folin phenol reagent, J. Biol. Chem.,
193 (1951) 265–275.
- Yuvraj, A.S. Vidyarthi, J. Singh, Enhancement of Chlorella
vulgaris cell density: shake flask and bench-top photobioreactor
studies to identify and control limiting factors, Korean J. Chem.
Eng., 33 (2016) 2396–2405.
- E.S. Salama, H.C. Kim, R.A.I. Abou-Shanab, M.K. Ji,
Y.K. Oh, S.H. Kim, B.H. Jeon, Biomass, lipid content, and
fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress, Bioprocess.
Biosyst. Eng., 36 (2013) 827–833.
- A.J. Alyabyev, N.L. Loseva, L.K. Gordon, I.N. Andreyeva,
G.G. Rachimova, V.I. Tribunskih, A.A. Ponomareva,
R.B. Kemp,
The effect of changes in salinity on the energy yielding
processes of Chlorella vulgaris and Dunaliella maritima cells,
Thermochim. Acta, 458 (2007) 65–70.
- R. Barghbani, K. Rezaei, A. Javanshir, Investigating the effects
of several parameters on the growth of Chlorella vulgaris using
Taguchi’s experimental approach, Int. J. Biotechnol. Wellness
Ind., 1 (2012) 128–133.
- N. Kalla, S. Khan, Effect of nitrogen, phosphorus concentration,
pH and salinity ranges on growth, biomass and lipid
accumolation of Chlorella vulgaris, Int. J. Pharm. Sci. Res.,
7 (2016) 397–405.
- S. Hiremath, P. Mathad, Impact of salinity on the physiological
and biochemical traits of Chlorella vulgaris Beijerinck, J. Algal
Biomass Util., 1 (2010) 51–59.
- P.R. Pandit, M.H. Fulekar, M.S.L. Karuna, Effect of salinity
stress on growth, lipid productivity, fatty acid composition,
and biodiesel properties in Acutodesmus obliquus and Chlorella
vulgaris, Environ. Sci. Pollut. Res. Int., 24 (2017) 13437–13451.
- A. Yaghoubi, M. Ghojazadeh, S. Abolhasani, H. Alikhah,
F. Khaki-Khatibi, Correlation of serum levels of vitronectin,
malondialdehyde and Hs-CRP with disease severity in coronary
artery disease, J. Cardiovasc. Thorac. Res., 7 (2015) 113–117.
- Diet and Health: Implications for Reducing Chronic Disease
Risk, National Research Council (US) Committee on Diet and
Health, National Academies Press (US), Washington (DC),
1989.
- I. Ahmad, J.A. Hellebust, Osmoregulation in the extremely
euryhaline marine micro-alga Chlorella autotrophica, Plant
Physiol., 74 (1984) 1010–1015.
- J. Liu, W. Vyverman, Differences in nutrient uptake capacity of
the benthic filamentous algae Cladophora sp., Klebsormidium sp.
and Pseudanabaena sp. under varying N/P conditions, Bioresour.
Technol., 179 (2015) 234–242.
- Y. Huang, Y. Huang, Q. Liao, Q. Fu, A. Xia, X. Zhu, Improving
phosphorus removal efficiency and Chlorella vulgaris growth
in high-phosphate MFC wastewater by frequent addition of
small amounts of nitrate, Int. J. Hydrogen Energy, 42 (2017)
27749–27758.
- M.A. Borowitzka, The ‘stress’ concept in microalgal biology —
homeostasis, acclimation and adaptation, J. Appl. Phycol.,
30 (2018) 2815–2825.
- Q.H. Shen, Y.P. Gong, W.Z. Fang, Z.C. Bi, L.H. Cheng, X.H. Xu,
H.L. Chen, Saline wastewater treatment by Chlorella vulgaris
with simultaneous algal lipid accumulation triggered by
nitrate deficiency, Bioresour. Technol., 193 (2015) 68–75.
- V.A. Herrera-Valencia, P.Y. Contreras-Pool, S.J. López-Adrián,
S. Peraza-Echeverría, L.F. Barahona-Pérez, The green microalga
Chlorella saccharophila as a suitable source of oil for biodiesel
production, Curr. Microbiol., 63 (2011) 151–157.
- B. Barati, S.Y. Gan, P.E. Lim, J. Beardall, S.M. Phang, Green algal
molecular responses to temperature stress, Acta Physiol. Plant.,
41 (2019) 1–19.
- V. Ördög, W.A. Stirk, P. Bálint, A.O. Aremu, A. Okem, C. Lovász,
Z. Molnár, J. van Staden, Effect of temperature and nitrogen
concentration on lipid productivity and fatty acid composition
in three Chlorella strains, Algae Res., 16 (2016) 141–149.
- R. Praveenkumar, K. Shameera, G. Mahalakshmi,
M.A. Akbarsha, N. Thajuddin, Influence of nutrient deprivations
on lipid accumulation in a dominant indigenous microalga
Chlorella sp., BUM11008: evaluation for biodiesel production,
SciVerse Sci., 37 (2012) 60–66.
- C.H. Ra, C.-H. Kang, N.K. Kim, C.-G. Lee, S.-K. Kim, Cultivation
of four microalgae for biomass and oil production using a
two-stage culture strategy with salt stress, Renewable Energy,
80 (2015) 117–122.