References

  1. A.F. Aravantinou, M.A. Theodorakopoulos, I.D. Manariotis, Selection of microalgae for wastewater treatment and potential lipids production, Bioresour. Technol., 147 (2013) 130–134.
  2. A.F. Aravantinou, E.F. Barkonikou, I.D. Manariotis, Microalgae biomass and lipid production using primary treated wastewater, Desal. Water Treat., 91 (2017) 228–234.
  3. V.R.V. Ashwaniy, M. Perumalsamy, S. Pandian, Enhancing the synergistic interaction of microalgae and bacteria for the reduction of organic compounds in petroleum refinery effluent, Environ. Technol. Innovation, 19 (2020) 100926, doi: 10.1016/j. eti.2020.100926.
  4. V.D. Tsavatopoulou, A.F. Aravantinou, I.D. Manariotis, Biofuel conversion of Chlorococcum sp. and Scenedesmus sp. biomass by one- and two-step transesterification, Biomass Convers. Biorefin., 11 (2021) 1301–1309.
  5. K. Price, I.H. Farag, Resources conservation in microalgae biodiesel production, Int. J. Eng. Technol. Res., 1 (2013) 49–56.
  6. M. Sakarika, M. Kornaros, Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production, Bioresour. Technol., 273 (2019) 237–243.
  7. E. Kaplan, N.A. Sayar, D. Kazan, A.A. Sayar, Assessment of different carbon and salinity level on growth kinetics, lipid, and starch composition of Chlorella vulgaris SAG 211-12, Int. J. Green Energy, 17 (2020) 290–300.
  8. M.A. Islam, M. Magnusson, R.J. Brown, G.A. Ayoko, M.N. Nabi, K. Heimann, Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles, Energies, 6 (2013) 5676–5702.
  9. S.M.U. Shah, A. Ahmad, M.F. Othman, M.A. Abdullah, Effects of palm oil mill effluent media on cell growth and lipid content of Nannochloropsis oculata and Tetraselmis suecica, Int. J. Green Energy, 13 (2016) 200–207.
  10. S.-H. Ho, A. Nakanishi, X. Ye, J.-S. Chang, K. Hara, T. Hasunuma, A. Kondo, Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy, Biotechnol. Biofuels, 7 (2014) 1–16, doi: 10.1186/1754-6834-7-97.
  11. G. Mujtaba, W. Choi, C.-G. Lee, K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123 (2012) 279–283.
  12. P. Asadi, H.A. Rad, F. Qaderi, Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents, Environ. Sci. Pollut. Res., 26 (2019) 29473–29489.
  13. M.M. Phukan, R.S. Chutia, B.K. Konwar, R. Kataki, Microalgae Chlorella as a potential bio-energy feedstock, Appl. Energy, 88 (2011) 3307–3312.
  14. G. Zhao, X. Chen, L. Wang, S. Zhou, H. Feng, W.N. Chen, R. Lau, Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation, Bioresour. Technol., 128 (2013) 337–344.
  15. P. Přibyl, V. Cepák, V. Zachleder, Production of lipids in 10 strains of Chlorella and parachlorella, and enhanced lipid productivity in Chlorella vulgaris, Appl. Microbiol. Biotechnol., 94 (2012) 549–561.
  16. R. Kakarla, J.W. Choi, J.H. Yun, B.H. Kim, J. Heo, S. Lee, D.H. Cho, R. Ramanan, H.S. Kim, Application of highsalinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process, J. Microbiol., 56 (2018) 56–64.
  17. C.-J. Yun, K.-O. Hwang, S.-S. Han, H.-G. Ri, The effect of salinity stress on the biofuel production potential of freshwater, Biomass Bioenergy J., 127 (2019) 105277, doi: 10.1016/j. biombioe.2019.105277.
  18. E. Ebrahimi, A. Salarzadeh, The effect of temperature and salinity on the growth of Skeletonema costatum and Chlorella capsulata in vitro, Int. J. Life Sci., 10 (2016) 40–44.
  19. J. Church, J.H. Hwang, K.T. Kim, R. McLean, Y.K. Oh, B. Nam, J.C. Joo, W.H. Lee, Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production, Bioresour. Technol., 243 (2017) 147–153.
  20. A.F. Aravantinou, V. Tsarpali, S. Dailianis, I.D. Manariotis, Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae, Ecotoxicol. Environ. Saf., 114 (2015) 109–116.
  21. APHA, WEF, AWWA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Assosiation, USA, 2012
  22. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193 (1951) 265–275.
  23. Yuvraj, A.S. Vidyarthi, J. Singh, Enhancement of Chlorella vulgaris cell density: shake flask and bench-top photobioreactor studies to identify and control limiting factors, Korean J. Chem. Eng., 33 (2016) 2396–2405.
  24. E.S. Salama, H.C. Kim, R.A.I. Abou-Shanab, M.K. Ji, Y.K. Oh, S.H. Kim, B.H. Jeon, Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress, Bioprocess. Biosyst. Eng., 36 (2013) 827–833.
  25. A.J. Alyabyev, N.L. Loseva, L.K. Gordon, I.N. Andreyeva, G.G. Rachimova, V.I. Tribunskih, A.A. Ponomareva,
    R.B. Kemp, The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells, Thermochim. Acta, 458 (2007) 65–70.
  26. R. Barghbani, K. Rezaei, A. Javanshir, Investigating the effects of several parameters on the growth of Chlorella vulgaris using Taguchi’s experimental approach, Int. J. Biotechnol. Wellness Ind., 1 (2012) 128–133.
  27. N. Kalla, S. Khan, Effect of nitrogen, phosphorus concentration, pH and salinity ranges on growth, biomass and lipid accumolation of Chlorella vulgaris, Int. J. Pharm. Sci. Res., 7 (2016) 397–405.
  28. S. Hiremath, P. Mathad, Impact of salinity on the physiological and biochemical traits of Chlorella vulgaris Beijerinck, J. Algal Biomass Util., 1 (2010) 51–59.
  29. P.R. Pandit, M.H. Fulekar, M.S.L. Karuna, Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris, Environ. Sci. Pollut. Res. Int., 24 (2017) 13437–13451.
  30. A. Yaghoubi, M. Ghojazadeh, S. Abolhasani, H. Alikhah, F. Khaki-Khatibi, Correlation of serum levels of vitronectin, malondialdehyde and Hs-CRP with disease severity in coronary artery disease, J. Cardiovasc. Thorac. Res., 7 (2015) 113–117.
  31. Diet and Health: Implications for Reducing Chronic Disease Risk, National Research Council (US) Committee on Diet and Health, National Academies Press (US), Washington (DC), 1989.
  32. I. Ahmad, J.A. Hellebust, Osmoregulation in the extremely euryhaline marine micro-alga Chlorella autotrophica, Plant Physiol., 74 (1984) 1010–1015.
  33. J. Liu, W. Vyverman, Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions, Bioresour. Technol., 179 (2015) 234–242.
  34. Y. Huang, Y. Huang, Q. Liao, Q. Fu, A. Xia, X. Zhu, Improving phosphorus removal efficiency and Chlorella vulgaris growth in high-phosphate MFC wastewater by frequent addition of small amounts of nitrate, Int. J. Hydrogen Energy, 42 (2017) 27749–27758.
  35. M.A. Borowitzka, The ‘stress’ concept in microalgal biology — homeostasis, acclimation and adaptation, J. Appl. Phycol., 30 (2018) 2815–2825.
  36. Q.H. Shen, Y.P. Gong, W.Z. Fang, Z.C. Bi, L.H. Cheng, X.H. Xu, H.L. Chen, Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency, Bioresour. Technol., 193 (2015) 68–75.
  37. V.A. Herrera-Valencia, P.Y. Contreras-Pool, S.J. López-Adrián, S. Peraza-Echeverría, L.F. Barahona-Pérez, The green microalga Chlorella saccharophila as a suitable source of oil for biodiesel production, Curr. Microbiol., 63 (2011) 151–157.
  38. B. Barati, S.Y. Gan, P.E. Lim, J. Beardall, S.M. Phang, Green algal molecular responses to temperature stress, Acta Physiol. Plant., 41 (2019) 1–19.
  39. V. Ördög, W.A. Stirk, P. Bálint, A.O. Aremu, A. Okem, C. Lovász, Z. Molnár, J. van Staden, Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains, Algae Res., 16 (2016) 141–149.
  40. R. Praveenkumar, K. Shameera, G. Mahalakshmi, M.A. Akbarsha, N. Thajuddin, Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production, SciVerse Sci., 37 (2012) 60–66.
  41. C.H. Ra, C.-H. Kang, N.K. Kim, C.-G. Lee, S.-K. Kim, Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress, Renewable Energy, 80 (2015) 117–122.