References

  1. S.W. Lee, S. Sarp, D.J. Jeon, J.H. Kim, Smart water grid: the future water management platform, Desal. Water Treat., 55 (2015) 339–346.
  2. Z. Dong, F. Zhang, D. Wang, X. Liu, J. Jin, Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal, J. Solid State Chem., 224 (2015) 88–93.
  3. X. Liu, D.J. Lee, Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters, Bioresour. Technol., 160 (2014) 24–31.
  4. N. Maaloula, P. Oulegob, M. Rendueles, A. Ghorbal, M. Díaz, Novel biosorbents from almond shells: characterization and adsorption properties modeling for Cu(II) ions from aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 2944–2954.
  5. Y. Kuang, Y. Gao, J. Zhang, J. Zhao, S. Luo, D. Zhang, C. Lu, Y. Sun, Effect of initial pH on the sludge fermentation performance enhanced by aged refuse at low temperature of 10°C, Environ. Sci. Pollut. Res., 27 (2020) 31468–31476.
  6. R. Wang, W. Wang, H. Ren, J. Chae, Detection of copper ions in drinking water using the competitive adsorption of proteins, Biosens. Bioelectron., 57 (2014) 179–185.
  7. N.P. Raval, P.U. Shah, N.K. Shah, N.K. Shah, Adsorptive removal of nickel(II) ions from aqueous environment: a review, J. Environ. Manage., 179 (2016) 1–20.
  8. A.S. Singha, A. Guleria, Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater, Int. J. Biol. Macromol., 67 (2014) 409–417.
  9. X.L. Liu, H.W. Pang, X.W. Liu, Q. Li, N. Zhang, L. Mao, M.Q. Qiu, B.W. Hu, H. Yang, X.K. Wang, Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions, The Innovation, 2 (2021) 100076, doi: 10.1016/j.xinn.2021.100076.
  10. M. Šæiban, M. Klašnja, B. Škrbiæ, Adsorption of copper ions from water by modified agricultural by-products, Desalination, 229 (2008) 170–180.
  11. G.M. Zeng, J. Wan, D.L. Huang, L. Hu, C. Huang, M. Cheng, W.J. Xue, X.M. Gong, R.Z. Wang, D.N. Jiang, Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils—a review, J. Hazard. Mater., 339 (2017) 354–367.
  12. M.J. Hao, M.Q. Qiu, H. Yang, B.W. Hu, X.X. Wang, Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis, Sci. Total Environ., 760 (2021) 143333, doi:10.1016/j.scitotenv.2020.143333.
  13. S.M. Zhu, N. Yang, D. Zhang, Poly(N,N-dimethylaminoethyl methacrylate) modification of activated carbon for copper ions removal, Mater. Chem. Phys., 113 (2009) 784–789.
  14. M. Imamoglu, M. Tekir, Removal of copper(II) and lead(II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination, 228 (2008) 108–113.
  15. Y.H. Li, S.G. Wang, A.Y. Cao, D. Zhao, X.F. Zhang, C.L. Xu, Z.K. Luan, D.B. Ruan, J. Liang, D.H. Wu, B.Q. Wei, Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes, Chem. Phys. Lett., 350 (2001) 412–416.
  16. X.H. Wang, Y.Y. Wang, S.F. He, H.Q. Hou, C. Hao, Ultrasonicassisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2+, Ultrason. Sonochem., 40 (2018) 221–229.
  17. Y. Fu, X. Liu, G. Chen, Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin, Results Phys., 12 (2019) 405–411.
  18. A.T. Xie, J.D. Dai, X. Chen, P. Ma, J.S. He, C.X. Li, Z.P. Zhou, Y.S. Yan, Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in-situ activation, Chem. Eng. J., 304 (2016) 609–620.
  19. X. Wang, Y. Wang, H. Hou, J. Wang, H. Chen, Ultrasonic method to synthesize
    glucan-g-poly(acrylic acid)/sodium lignosulfonate hydrogels and studies of their adsorption of Cu2+ from aqueous solution, ACS Sustainable Chem. Eng., 5 (2017) 6438–6446.
  20. T.Q. Zhao, K. Zhang, J.W. Chen, X.B. Shi, X. Li, Y.L. Ma, G.Z. Fang, S.Y. Xu, Changes in heavy metal mobility and availability in contaminated wet-land soil remediated using lignin-based poly(acrylic acid), J. Hazard. Mater., 368 (2019) 459–467.
  21. Y.C. Zhang, S.Z. Ni, X.J. Wang, W.H. Zhang, L. Lagerquist, M.H. Qin, S. Willför, C.L. Xu, P. Fatehi, Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles, Chem. Eng. J., 372 (2019) 82–91.
  22. Y. Meng, J. Lu, Y. Cheng, Q. Li, H.S. Wang, Lignin-based hydrogels: a review of preparation, properties, and application, Int. J. Biol. Macromol., 135 (2019) 1006–1019.
  23. J.Z. Ma, M.A. Khan, M.Z. Xia, C.L. Fu, S.D. Zhu, Y.T. Chu, W. Lei, F.Y. Wang, Effective adsorption of heavy metal ions by sodium lignosulfonate reformed montmorillonite, Int. J. Biol. Macromol., 138 (2019) 188–197.
  24. M.Y. Liu, Y. Liu, J.J. Shen, S.Y. Zhang, X.Y. Liu, X.X. Chen, Y.L. Ma, S.X. Ren, G.Z. Fang, S.J. Li, C.T. Li, T. Sun, Simultaneous removal of Pb2+, Cu2+ and Cu2+ ions from wastewater using hierarchical porous polyacrylic acid grafted with lignin, J. Hazard. Mater., 392 (2020) 122208, doi: 10.1016/j.jhazmat.2020.122208.
  25. B. Ibrahim, M. Schlegel, N. Kanswohl, Investigation of applicability of wetland biomass for producing biochar by hydrothermal carbonization (HTC), Landbauforschung-Ger, Appl. Agric. For. Res., 64 (2014) 119–124.
  26. N. Brun, K. Sakaushi, L. Yu, L. Giebeler, J. Eckert, M.M. Titirici, Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries, Phys. Chem. Chem. Phys., 15 (2013) 6080–6087.
  27. M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 47 (2009) 2281–2289.
  28. N. Baccile, G. Laurent, F. Babonneau, F. Fayon, M. Titirici, M. Antonietti, Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations, J. Phys. Chem. C, 113 (2009) 9644–9654.
  29. L. Fiori, D. Basso, D. Castello, M. Baratieri, Hydrothermal carbonization of biomass: design of a batch reactor and preliminary experimental results, Chem. Eng. Trans., 37 (2014) 55–60.
  30. J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery, Chem. Soc. Rev., 39 (2010) 656–675.
  31. Y.Y. Wang, L.L. Zhu, X.H. Wang, W.R. Zheng, C. Hao, C.L. Jiang, J.B. Wu, Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes, J. Ind. Eng. Chem., 61 (2018) 321–330.
  32. C. Jiang, X. Wang, B. Hou, C. Hao, J. Wu, Construction of a lignosulfonate−lysine hydrogel for the adsorption of heavy metal ions, J. Agric. Food Chem., 68 (2020) 3050–3060.
  33. C. Jiang, X. Wang, D. Qin, W. Da, B. Hou, C. Hao, J. Wu, Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes, J. Hazard. Mater., 369 (2019) 50–61.
  34. A. Etaati, S. Pather, Z. Fang, H. Wang, The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis, Composites, Part B, 62 (2014) 19–28.
  35. H. Zhou, H. Zhu, F. Xue, H. He, S. Wang, Cellulose-based amphoteric adsorbent for the complete removal of lowlevel heavy metal ions via a specialization and cooperation mechanism, Chem. Eng. J., 385 (2020) 123879, doi: 10.1016/j. cej.2019.123879.
  36. Y. Zhu, W. Fan, T. Zhou, X. Li, Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms, Sci. Total Environ., 678 (2019) 253–266.
  37. Q. Huang, D. Hu, M. Chen, C. Bao, X. Jin, Sequential removal of aniline and heavy metal ions by jute fiber biosorbents: a practical design of modifying adsorbent with reactive adsorbate, J. Mol. Liq., 285 (2019) 288–298.
  38. L. Xia, Y. Lu, H. Meng, C. Li, Preparation of C-MOx nanocomposite for efficient adsorption of heavy metal ions via mechanochemical reaction of CaC2 and transitional metal oxides, J. Hazard. Mater., 393 (2020) 122487, doi: 10.1016/j. jhazmat.2020.122487.
  39. Y. Liu, T. Xiao, P.C. Baveye, J. Zhu, Z. Ning, H. Li, Potential health risk in areas with high naturally-occurring cadmium background in southwestern China, Ecotoxicol. Environ. Saf., 112 (2015) 122–131.
  40. Z. Lin, Y. Hu, Y. Yuan, B. Hu, B. Wang, Comparative analysis of kinetics and mechanisms for Pb(II) sorption onto three kinds of microplastics, Ecotoxicol. Environ. Saf., 208 (2021) 111451, doi:10.1016/j.ecoenv.2020.111451.
  41. B. Wang, Y. Li, J. Zheng, Y. Hu, B. Hu, Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa), Chemosphere, 254 (2020) 126898, doi: 10.1016/j.chemosphere.2020.126898.