References
- Vignieri, Sacha, Fahrenkamp-Uppenbrink, Julia, Ecosystem
Earth, Science, 356 (2017) 258–259.
- A. John, Water is the staff of life and at the heart of public
health, J. R. Soc. Med., 112 (2019) 516–518.
- A.L. Bruce, Herbert Hoover, spokesman of humane efficiency:
the Mississippi flood of 1927, Am. Q., 22 (1970) 690–700.
- M. Qadir, B.R. Sharma, A. Bruggeman, R. Choukr-Allah,
F. Karajeh, Non-conventional water resources and opportunities
for water augmentation to achieve food security in water scarce
countries, Agric. Water Manage., 87 (2007) 2–22.
- J. Magrath, Water: A Shared Responsibility, The United Nations
World Water Development Report 2, 2007,
pp. 309–311.
- J.D. Priscoli, What is public participation in water resources
management and why is it important?, Water Int., 29 (2004)
221–227.
- G. Joyeeta, A. Rhodante, A. Lawal, The human right to water:
moving towards consensus in a fragmented world, Rev.
European Commun. Int. Environ. Law, 19 (2010) 294–305.
- H. Almas, Z. Mahrukh, M. Asim, A. Sana, S. Samia, Assessment
of wastewater quality of drains for irrigation, J. Environ. Prot.,
4 (2013) 937–945.
- M.M. Mohammad, N. Azam, R.S.A. Hamid, H.M. Amir,
Adsorption of cationic dye textile wastewater using Clinoptilolite:
isotherm and kinetic study, J. Text. Inst., 110 (2019) 74–80.
- V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent
wastewater dye removal methods: a review, J. Environ. Chem.
Eng., 6 (2018) 4676–4697.
- K. Rita, Textile dyeing industry an environmental hazard,
Nat. Sci., 4 (2012) 22–26.
- A.K. Tawfik, S.A. Meram, R. Mohamed, Textile dyeing industry:
environmental impacts and remediation, Environ. Sci. Pollut.
Res., 27 (2019) 3803–3818.
- D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics
and constituents of synthetic effluents: a critical review, Int.
J. Environ. Sci. Technol., 16 (2019) 1193–1226.
- P.S. Rajat, K.S. Pradeep, L.S. Ram, Present status of
biodegradation of textile dyes, Curr. Trends Biomed. Eng.
Biosci., 3 (2017) 66–68.
- J. Guo, J. Wang, G. Zheng, X. Jiang, Optimization of the removal
of reactive Golden Yellow SNE dye by cross-linked cationic
starch and its adsorption properties, J. Eng. Fibers Fabr.,
14 (2019) 1–13.
- H.M. Noshaba, Z. Hajira, A. Naeem, Organismic-level acute
toxicology profiling of reactive azo dyes, Environ. Monit.
Assess., 190 (2018) 612, doi: 10.1007/s10661-018-6986-7.
- M.M. Mphilisi, J.N. Catherine, B.M. Bhekie, Recent developments
in environmental photocatalytic degradation of organic
pollutants: the case of titanium dioxide nanoparticles—a review,
J. Nanomater., 2015 (2015) 1–29, doi: 10.1155/2015/790173.
- J. Guo, J. Wang, G. Zheng, X. Jiang, A TiO2/crosslinked
carboxymethyl starch composite for high-efficiency adsorption
and photodegradation of cationic Golden Yellow X-GL dye,
Environ. Sci. Pollut. Res., 26 (2019) 24395–24406.
- Z. Wang, W. Cai, X. Hong, X. Zhao, F. Xu, C. Cai, Photocatalytic
degradation of phenol in aqueous nitrogen-doped TiO2
suspensions with various light sources, Appl. Catal., B,
57 (2005) 223–231.
- L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, X. Wang, Bismuth
oxychloride-based materials for the removal of organic
pollutants in wastewater, Chemosphere, 273 (2021) 128576,
doi:10.1016/j.chemosphere.2020.128576.
- T.P. Jung, J.K. Dong, H.K. Do, H.K. Jong, A facile graft
polymerization approach to N-doped TiO2 heterostructures
with enhanced visible-light photocatalytic activity, Mater.
Lett., 202 (2017) 66–69.
- X.W. Cheng, X.J. Yu, Z.P. Xing, Characterization and
mechanism analysis of N doped TiO2 with visible light
response and its enhanced visible activity, Appl. Surf. Sci.,
258 (2012) 3244–3248.
- M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, M.A.W.D. Wan,
Application of doped photocatalysts for organic pollutant
degradation – a review, J. Environ. Manage., 198 (2017) 78–94.
- N. Kovalevskiy, D. Selishchev, D. Svintsitskiy, S. Selishcheva,
A. Berezin, D. Kozlov, Synergistic effect of polychromatic
radiation on visible light activity of N-doped TiO2
photocatalyst, Catal. Commun., 134 (2020) 105841, doi: 10.1016/j.catcom.2019.105841.
- A. Sanchez-Martinez, O. Ceballos-Sanchez, C. Koop-Santa,
E.R. López-Mena, E. Orozco-Guareño,
M. García-Guaderrama,
N-doped TiO2 nanoparticles obtained by a facile co-precipitation
method at low temperature, Ceram. Int., 44 (2018) 5273–5283.
- M. Tatiana, P. Paraskevi, V. Danae, N-doped TiO2 photocatalysts
for bacterial inactivation in water, J. Chem. Technol. Biotechnol.,
93 (2018) 2518–2526.
- X. Liu, Y. Liu, S. Lu, W. Guo, B. Xi, Performance and mechanism
into TiO2/zeolite composites for sulfadiazine adsorption and
photodegradation, Chem. Eng. J., 350 (2018) 131–147.
- G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly
visible-light active N-doped TiO2 photocatalyst, J. Mater.
Chem., 20 (2010) 5301–5309.
- R. Sunil, R. Swapnil, G. Suja, K.S. Virendra, R.G. Parag,
B.P. Aniruddha, Synthesis and characterization of samarium
and nitrogen doped TiO2 photocatalysts for photo-degradation
of 4-acetamidophenol in combination with hydrodynamic and
acoustic cavitation, Sep. Purif. Technol., 209 (2019) 254–269.
- H. Li, Y. Hao, H. Lu, L. Liang, Y. Wang, J. Qiu, X. Shi,
Y. Wang, J. Yao, A systematic study on visible-light N-doped
TiO2 photocatalyst obtained from ethylenediamine by sol–gel
method, Appl. Surf. Sci., 344 (2015) 112–118.
- P. Devarly, Y. Kartika, N. Indraswati, Activated carbon from
jackfruit peel waste by H3PO4 chemical activation: pore
structure and surface chemistry characterization, Chem. Eng. J.,
140 (2008) 32–42.
- H. Umma, M.D.S. Islam, A.S. Tawsif, M.A. Amalina, C.A. Bee,
Adsorption and photocatalytic degradation of anionic dyes
on chitosan/PVA/Na-titanate/TiO2 composites synthesized
by solution casting method, Carbohydr. Polym., 149 (2016)
317–331.
- C.I. Elida, P. Rodica, M. Florica, A.C. Liliana, J. Agnes,
O. Corina, R. Cornelia, L. Carmen, S. Paula, Photocatalytic
activity of a nitrogen-doped TiO2 modified zeolite in the
degradation of Reactive Yellow 125 azo dye, J. Taiwan Inst.
Chem. Eng., 44 (2013) 270–278.