References

  1. R. Kant, Textile dyeing industry an environmental hazard, Nat. Sci., 4 (2012) 5, doi: 10.4236/ns.2012.41004.
  2. H.A. Aziz, M.H.A. Razak, M.Z.A. Rahim, W.I.S.W. Kamar, S.S. Abu Amr, S. Hussain, J. Van Leeuwen, Evaluation and comparison the performance of titanium and zirconium(IV) tetrachloride in textile wastewater treatment, Data Brief, 18 (2018) 920–927.
  3. B. Liu, J. Wu, C. Cheng, J. Tang, M.F.S. Khan, J. Shen, Identification of textile wastewater in water bodies by fluorescence excitation emission matrix-parallel factor analysis and high-performance size exclusion chromatography, Chemosphere, 216 (2019) 617–623.
  4. R. Paradelo, X. Vecino, A.B. Moldes, M.T. Barral, Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application, Environ. Sci. Pollut. Res., 26 (2019) 21085–21097.
  5. L. Bilińska, M. Gmurek, S. Ledakowicz, Comparison between industrial and simulated textile wastewater treatment by AOPs – biodegradability, toxicity and cost assessment, Chem. Eng. J., 306 (2016) 550–559.
  6. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process, J. Environ. Sci., 65 (2018) 201–222.
  7. H. Zazou, H. Afanga, S. Akhouairi, H. Ouchtak, A.A. Addi, R.A. Akbour, A. Assabbane, J. Douch, A. Elmchaouri,
    J. Duplay, A. Jada, M. Hamdani, Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process, J. Water Process Eng., 28 (2019) 214–221.
  8. S.M. Yakout, M.R. Hassan, A.A. Abdeltawab, M.I. Aly, Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal, J. Cleaner Prod., 234 (2019) 124–131.
  9. A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. García-Peñas, G.T. Mola, C. Si, F.J. Stadler, Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review, Chem. Eng. J., 382 (2020) 122937, doi: 10.1016/j.cej.2019.122937.
  10. G. Sharma, A. Kumar, S. Sharma, H. Ala’a, M. Naushad, A.A. Ghfar, T. Ahamad, F.J.J.S. Stadler, P. Technology, Fabrication and characterization of novel Fe0@Guar gum-crosslinked-soya lecithin nanocomposite hydrogel for photocatalytic degradation of methyl violet dye, Sep. Purif. Technol., 211 (2019) 895–908.
  11. A. Ikhlaq, H.M.S. Munir, A. Khan, F. Javed, K.S. Joya, Comparative study of catalytic ozonation and Fenton-like processes using iron-loaded rice husk ash as catalyst for the removal of methylene blue in wastewater, Ozone: Sci. Eng., 147 (2018) 1–11.
  12. A. Ikhlaq, B. Kasprzyk-Hordern, Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: Formation of chlorides, Appl. Catal., B, 200 (2017) 274–282.
  13. J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal., B, 99 (2010) 27–42.
  14. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of catalytic ozonation: an investigation into superoxide ion radical and hydrogen peroxide formation during catalytic ozonation on alumina and zeolites in water, Appl. Catal., B, 129 (2013) 437–449.
  15. X. Li, D. Wang, S. Zhang, Evaluation of Fe-functionalized 4A zeolite as ozone catalyst for an enhancement of hydroxyl radical pathway in a multiphase reactor, Ozone: Sci. Eng., 41 (2019) 156–165.
  16. A.D. Eaton, L.S. Clesceri, E.W. Rice, A.E. Greenberg, M.A.H. Franson, Standard Methods for the Examination of Water & Waste Water, American Public Health Association, Washington DC, USA, 2005.
  17. C. Chen, X. Yan, B.A. Yoza, T. Zhou, Y. Li, Y. Zhan, Q. Wang, Q.X. Li, Efficiencies and mechanisms of ZSM5 zeolites loaded with cerium, iron, or manganese oxides for catalytic ozonation of nitrobenzene in water, Sci. Total Environ., 612 (2018) 1424–1432.
  18. Y. Wang, W. Ma, B.A. Yoza, Y. Xu, Q.X. Li, C. Chen, Q. Wang, Y. Gao, S. Guo, Y. Zhan, Investigation of catalytic ozonation of recalcitrant organic chemicals in aqueous solution over various ZSM-5 zeolites, Catalysts, 8 (2018) 128, doi: 10.3390/ catal8040128.
  19. A. Ikhlaq, S. Waheed, K.S. Joya, M. Kazmi, Catalytic ozonation of paracetamol on zeolite A: non-radical mechanism, Catal. Commun., 112 (2018) 15–20.
  20. H. Einaga, S. Futamura, Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites, Catal. Commun., 8 (2007) 557–560.
  21. K. Jasrotia, Removal of Methylene Blue by Advanced Oxidation Using Fenton’s Reagent and Microfiltration, Department of Chemical Engineering, Thapar Institute of Engineering & Technology, India, 2015.
  22. S. Patil, S. Renukdas, N. Patel, Removal of methylene blue, a basic dye from aqueous solutions by adsorption using teak tree (Tectona grandis) bark powder, Int. J. Environ. Sci., 1 (2011) 711.
  23. H. Masoumbeigi, A. Rezaee, Removal of Methylene Blue (MB) dye from synthetic wastewater using UV/H2O2 advanced oxidation process, J. Health Policy Sustainable Health, 2 (2015) 160–166.
  24. D.A. Fungaro, L.C. Grosche, A. Pinheiro, J.C. Izidoro, S.I. Borrely, Adsorption of methylene blue from aqueous solution on zeolitic material for color and toxicity removal, Orbital: The Electron. J. Chem., 2 (2011) 235–247.
  25. X. Liu, Y. Hou, J. Guo, Y. Wang, Q. Zuo, C. Wang, Catalytic ozone aqueous decomposition of methylene blue using composite metal oxides, IOP Conf. Ser.: Mater. Sci. Eng., 87 (2015) 012031.
  26. J.-f. Liu, Z.-s. Zhao, G.-b. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
  27. D. Gümüş, F. Akbal, A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid, Chemosphere, 174 (2017) 218–231.