References

  1. A. Asad, B. Farrukh, S. Ashish, Irfanullah, K. Saif Ullah, H.F. Izharul, Biological wastewater treatment (anaerobicaerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater, Sci. Total Environ., 686 (2019) 681–708.
  2. Y. Comeau, Biological Wastewater Treatment. Course Notes CIV8220, 3rd ed., Polytechnic School of Montreal, 2010.
  3. J. Mulinari, C. Jose de Andrade, H.L. Brandao, A. Da Silva, S.M.A. Guelli Ulson de Souza, A.A. Ulson de Souza, Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients, Biocatal. Agric. Biotechnol., 24 (2020) 1–10.
  4. D.V.M. De Oliveira, M. Dias Rabelo, Y.N. Nariyoshi, Evaluation of a MBBR (moving bed biofilm reactor) pilot plant for treatment of pulp and paper mill wastewater, Int. J. Environ. Monit. Anal., 2 (2014) 220–225.
  5. R. Khanongnuch, F. Di Capua, A.M. Lakaniemi, E.R. Rene, P.N.L. Lens, Long-term performance evaluation of an anoxic sulfur oxidizing moving bed biofilm reactor under nitrate limited conditions, Environ. Sci. Water Res. Technol., 5 (2019) 1072–1081.
  6. C. Ribeiro, F. Bisinella Scheufele, F.R. Espinoza-Quinones, A. Nivaldo Módenes, M.G. Carlos da Silva, M.G. Adeodato Vieira, C. Eduardo Borba, Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye, Colloids Surf., A, 482 (2015) 693–701.
  7. P.A. Vieira, A.A.S. Santana, W.B.C. Bezerra, A.S.H. Silva, A.P.J. Chaves, C.P.J. De Melo, C.E. Da Silva Filho, C. Airoldi, Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp, J. Hazard. Mater. 166 (2009) 1272–1278.
  8. F.N. Cardoso, C.E. Lima, S.I. Pinto, V.C. Amavisca, B. Royer, B.R. Pinto, S.W. Alencar, F.P.S. Pereira, Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution, J. Environ. Manage., 92 (2011) 1237–1247.
  9. M. Saif Ur Rehman, I. Kim, J.I. Han, Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass, Carbohydr. Polym., 90 (2012) 1314–1322.
  10. M.C. Somasekhara Reddy, V. Nirmala, Bengal gram seed husk as an adsorbent for the removal of dyes from aqueous solutions – column studies, Arabian J. Chem., 10 (2017) S2406–S2416.
  11. J.G. Duarte, L.L.S. Silva, D.M.G. Freire, M.C. Cammarota, M.L.E. Gutarra, Enzymatic hydrolysis and anaerobic biological treatment of fish industry effluent: evaluation of the mesophilic and thermophilic conditions, Renewable Energy, 83 (2015) 455–462.
  12. A. Aitcheikh, N. Boutaleb, B. Bahlaouan, A. El Jaafari, T. Taiek, M. Bennani, S. Lazar, S. El Antri, Dairy wastewater treatment in moving bed biofilm reactor using sardine’s scales as biomass support, Int. J. Eng. Res. Technol., 3 (2014) 1036–1040.
  13. A. Di Biase, M.S. Kowalski, T.R. Devlin, J.A. Oleszkiewicz, Moving bed biofilm reactor technology in municipal wastewater treatment: a review, J. Environ. Manage., 247 (2019) 849–866.
  14. G. Fagerlund, Determination of specific surface by the BET method, Mater. Constr., 6 (1973) 239–245.
  15. DIN 38405-D-11-1 OPO43, Dosage des composés phosphoriques méthode photométrique par acide phosphomolibdique, 1993.
  16. J. Rodier, C. Bazin, J.P. Broutin, H. Champsaur, L’analyse de l’eau – Eaux naturelles, eaux résiduaires, eau de mer, Technique et ingénierie, Dunod, Paris, 1996, 8e, p. 1600.
  17. J. Liu, J. Zhou, N. Xu, A. He, F. Xin, J. Ma, Y. Fang, W. Zhang, S. Liu, M. Jiang, W. Dong, Performance evaluation of a labscale moving bed biofilm reactor (MBBR) using polyethylene as support material in the treatment of wastewater contaminated with terephthalic acid, Chemosphere, 227 (2019) 117–123.
  18. A. Rehman, N. Ayub, I. Naz, I. Perveen, S. Ahmed, Effects of hydraulic retention time (HRT) on the performance of a pilotscale trickling filter system treating low-strength domestic wastewater, Pol. J. Environ. Stud., 29 (2020) 1–11.
  19. S.N.H. Abu Bakar, H. Abu Hasan, A. Mohammad, S.R. Sheikh Abdullah, R. Ngteni, K.M. Mohamed Yusof, Performance of a laboratory-scale moving bed biofilm reactor (MBBR) and its microbial diversity in palm oil mill effluent (POME) treatment, Process Saf. Environ. Prot., 142 (2020) 325–335.
  20. A. Gonzalez-Martinez, J.C. Leyva-Díaz, A. Rodriguez- Sanchez, B. Muñoz-Palazon, A. Rivadeneyra, J.M. Poyatos,
    M.A. Rivadeneyra, M.V. Martinez-Toledo, Isolation and metagenomic characterization of bacteria associated with calcium carbonate and struvite precipitation in a pure moving bed biofilm reactor-membrane bioreactor, Biofouling, 31 (2015) 333–348.
  21. J.C. Leyva-Díaz, A. González-Martínez, M.M. Muñío, J.M. Poyatos, Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modelling, Appl. Microbiol. Biotechnol., 99 (2015) 10333–10343.
  22. R. Rajakumar, T. Meenambal, P.M. Saravanan, P. Ananthanarayanan, Treatment of poultry slaughterhouse wastewater in hybrid upflow anaerobic sludge blanket reactor packed with pleated poly vinyl chloride rings, Bioresour. Technol., 103 (2012) 116–122.
  23. J.A. Kawan, A.R. Rakmi, O. Bin Jaafar, F. Suja, Polishing of chemical oxygen demand (COD) using moving bed
    bio-reactor, Appl. Mech. Mater., 773–774 (2015) 1281–1285.
  24. S. Chen, D. Sun, J.S. Chung, Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic–aerobic moving-bed biofilm reactor system, Waste Manage., 28 (2008) 339–346.
  25. L. He, H. Peng, L. Hongbo, Z. Guangjie, F. Bo, Z. Zhiyong, Fullscale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater, Bioresour. Technol., 260 (2018) 105–114.
  26. M. Kermani, B. Bina, H. Movahedian, M.M. Amin, M. Nikaein, Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater, Am. J. Environ. Sci., 4 (2008) 682–689.
  27. E.O. Jatto, I.O. Asia, E.E. Egbon, J.O. Otutu, M.E. Chukwuedo, C.J. Ewansiha, Treatment of waste water from food industry using snail shell, Academia Arena, 2 (2010) 32–36.
  28. S.A.A. Nakhli, K. Ahmadizadeh, M. Fereshtehnejad, M.H. Rostami, M. Safari, S.M. Borghei, Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia, SpringerPlus, 3 (2014) 1–10
  29. A. Fathi, N. Boutaleb, B. Bahlaouan, D. Lakhal, M. Bennani, S. Lazar, S. El Antri, Treatment of fish effluents in moving bed bioreactor process using natural carriers as biomass support, Int. J. Eng. Res. Technol., 9 (2020) 185–189.
  30. A. Aitcheikh, N. Boutaleb, B. Bahlaouan, M. Bennani, S. Lazar, S. El Antri, Utilisation d’un lit fixe d’origine naturelle pour le traitement biologique d’ effluents laitiers, Dechets-sciencestechnique, 78 (2018) 43–53.
  31. V. Turcotte, J.F. Blais, G. Mercier, P. Drogui, Utilisation des écailles de cacao comme support de biofiltration pour le traitement d’effluents de l’industrie agro-alimentaire, J. Environ. Eng. Sci., 8 (2013) 277–288.
  32. A. Aitcheikh, N. Boutaleb, B. Bahlaouan, H. El Omari, A. El Jaafari, S. Lazar, S. El Antri, Snail shells: a new ecological packing for moving bed reactor MBBR in the biological treatment of dairy effluent, Global J. Biosci. Biotechnol., 5 (2016) 492–497.
  33. H. Falahti-Marvast, A. Karimi-Jashni, Performance of simultaneous organic and nutrient removal in a pilot scale anaerobiceanoxiceoxic membrane bioreactor system treating municipal wastewater with a high nutrient mass ratio, Int. Biodeterior. Biodegrad., 104 (2015) 363–370.
  34. S. Yang, F. Yang, Z. Fu, T. Wang, R. Lei, Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment, J. Hazard. Mater., 175 (2010) 551–557.
  35. P. Brown, S.K. Ong, Y.W. Lee, Influence of anoxic and anaerobic hydraulic retention time on biological nitrogen and phosphorus removal in a membrane bioreactor, Desalination, 270 (2011) 227–232.
  36. M. Naderi, Chapter 14 – Surface Area: Brunauer–Emmett–Teller (BET), S. Tarleton, Ed., Progress in Filtration and Separation, Academic Press, 2015, pp. 585–608.
  37. M.J. Lehtola, I.T. Miettinen, A. Hirvonen,T. Vartiainen, P.J. Martikainen, Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy, Int. J. Hyg. Environ. Health, 210 (2007) 725–732.
  38. N. Boutaleb, Study of the Formation of Biofilms on the Surfaces of Materials Commonly Used in Drinking Water Pipes, Doctoral Thesis, University of Bretagne sud UFR Sciences and Engineering Sciences, 2007.
  39. N. Boutaleb, H. Latrache, O. Sire, Bacterial bioadhesion in drinking water systems: effects of materials and environmental factors, Tech. Sci. Methods, 5 (2008) 37–42.
  40. N. Boutaleb, H. Latrache, O. Sire, Bacteria-material interactions in drinking water pipes. Role of surface physicochemical properties on the adhesion power, Tech. Sci. Methods, 11 (2008) 73–80.
  41. H. El Omari, N. Boutaleb, B. Bahlaouan, M. Mekouar, A. Jrifi, S. Aitlefqih, B. Cagnon, S. Lazar, S. El Antri, Drinking water pipes: a new formulation of anti-biofilm PVC pipes, L’Eau, l’Industry, les Nuisances, 407 (2018) 90–95.
  42. H. El Omari, N. Boutaleb, B. Bahlaouan, S. Oualich, A. Jrifi, S. Aitlefqih, S. Lazar, S. El Antri, Drinking water pipeline: new PVC formulation anti-biofilm for the Moroccan industry, J. Mater. Environ. Sci., 8 (2017) 4444–4450.