References
- M.A.H. Al-Hiary, Assessing competitiveness of Jordanian
Olive Production a Policy Analysis Matrix (PAM), J. Stud.
Manage. Plann., 1 (2015) 19–29.
- A.I. Khdair, G. Abu-Rumman, S.I. Khdair, Pollution estimation
from olive mills wastewater in Jordan, Heliyon, 5 (2019) e02386,
doi: 10.1016/j.heliyon.2019.e02386.
- E. Eroğlu, İ. Eroğlu, U. Gündüz, L. Türker, M. Yücel, Biological
hydrogen production from olive mill wastewater with twostage
processes, Int. J. Hydrogen Energy, 31 (2006) 1527–1535.
- M. Kallel, C. Belaid, T. Mechichi, M. Ksibi, B. Elleuch,
Removal of organic load and phenolic compounds from olive
mill wastewater by Fenton oxidation with zero-valent iron,
Chem. Eng. J., 150 (2009) 391–395.
- D. Quaratino, A. D’Annibale, F. Federici, C.F. Cereti, F. Rossini,
M. Fenice, Enzyme and fungal treatments and a combination
thereof reduce olive mill wastewater phytotoxicity on Zea mays
L. seeds, Chemosphere, 66 (2007) 1627–1633.
- G. Aliotta, A. Fiorentino, A. Oliva, F. Temussi, Olive oil mill
wastewater: isolation of polyphenols and their phytotoxicity
in vitro, Allelopathy J., 9 (2002) 9–17.
- K. Al-Malah, M.O. Azzam, N.I. Abu-Lail, Olive mills effluent
(OME) wastewater post-treatment using activated clay, Sep.
Purif. Technol., 20 (2000) 225–234.
- J.S. Torrecilla, J.C. Cancilla, Chapter 40 – Phenolic Compounds
in Olive Oil Mill Wastewater, V.R. Preedy, R.R. Watson, Eds.,
Olives and Olive Oil in Health and Disease Prevention,
Academic Press, 2021, Elsevier, Printed in USA, pp. 693–700.
- M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi, Low
cost biosorbent “banana peel” for the removal of phenolic
compounds from olive mill wastewater: kinetic and equilibrium
studies, J. Hazard. Mater., 166 (2009) 117–125.
- U.F. Alkaram, A.A. Mukhlis, A.H. Al-Dujaili, The removal of
phenol from aqueous solutions by adsorption using surfactantmodified
bentonite and kaolinite, J. Hazard. Mater., 169 (2009)
324–332.
- M.I.A. Abdel Maksoud, A.M. Elgarahy, C. Farrell,
A.H. Al-Muhtaseb, D.W. Rooney, A.I. Osman, Insight on
water remediation application using magnetic nanomaterials
and biosorbents, Coord. Chem. Rev., 403 (2020) 213096,
doi: 10.1016/j.ccr.2019.213096.
- H.Y. Zhu, R. Jiang, L. Xiao, Adsorption of an anionic azo dye by
chitosan/kaolin/γ-Fe2O3 composites, Appl. Clay Sci., 48 (2010)
522–526.
- M. Achak, A. Hafidi, L. Mandi, N. Ouazzani, Removal of
phenolic compounds from olive mill wastewater by adsorption
onto wheat bran, Desal. Water Treat., 52 (2014) 2875–2885.
- N. Adhoum, L. Monser, Decolourization and removal of phenolic
compounds from olive mill wastewater by electrocoagulation,
Chem. Eng. Process. Process Intensif., 43 (2004) 1281–1287.
- M. Ghahrchi, A. Rezaee, A. Adibzadeh, Study of kinetic models
of olive oil mill wastewater treatment using electrocoagulation
process, Desal. Water Treat., 211 (2021) 123–130.
- N. Rahmanian, S.M. Jafari, C.M. Galanakis, Recovery and
removal of phenolic compounds from olive mill wastewater,
J. Am. Oil Chem. Soc., 91 (2014) 1–18.
- D.P. Minh, P. Gallezot, M. Besson, Treatment of olive oil mill
wastewater by catalytic wet air oxidation: 3. Stability of
supported ruthenium catalysts during oxidation of model
pollutant p-hydroxybenzoic acid in batch and continuous
reactors, Appl. Catal., B, 75 (2007) 71–77.
- A.M. Awwad, R. Ahmad, H. Alsyouri, Associated minerals and
their influence on the optical properties of Jordanian kaolin,
Jordan J. Earth Environ. Sci., 2 (2009) 66–71.
- R.Z. Al Bakain, Y.S. Al-Degs, A.A. Issa, S.A. Jawad, K.A. Safieh,
M.A. Al-Ghouti, G. Christidis, Activation of kaolin with
minimum solvent consumption by microwave heating, Clay
Miner., 49 (2014) 667–681.
- A. Alfarawati, A. A. Nizam, N. Issa, Quantitative analysis
of phenolic compounds in Syrian olive mill wastewater by
spectrophotometry and HPLC, Egypt J. Pure Appl. Sci. Quant.,
51 (2013) 9–14.
- EPA, Protocol for Review and Validation of New Methods
for Regulated Organic and Inorganic Analytes in Wastewater
Under EPA’s Alternate Test Procedure Program, EPA 821-B-18-
001, Environmental Protection Agency, EPA, Printed in USA,
2018.
- S. Kumar, A.K. Panda, R.K. Singh, Preparation and
characterization of acids and alkali treated kaolin clay, Bull.
Chem. React. Eng. Catal., 8 (2013) 61–69.
- R.F. Walker, Mechanism of material transport during sintering,
J. Am. Ceram. Soc., 38 (1955) 187–197.
- K. Ulucan, C. Noberi, T. Coskun, C.B. Ustundag, E. Debik,
C. Kaya, Disinfection by-products removal by nanoparticles
sintered in zeolite, J. Clean Energy Technol., 1 (2013) 120–123.
- A.G. González, M.Á. Herrador, A practical guide to analytical
method validation, including measurement uncertainty
and accuracy profiles, TrAC, Trends Anal. Chem., 26 (2007)
227–238.
- D.A. Martens, Identification of phenolic acid composition of
alkali‐extracted plants and soils, Soil Sci. Soc. Am. J., 66 (2002)
1240–1248.
- B. Bayram, B. Ozcelik, G. Schultheiss, J. Frank, G. Rimbach,
A validated method for the determination of selected phenolics
in olive oil using high-performance liquid chromatography
with coulometric electrochemical detection and a fused-core
column, Food Chem., 138 (2013) 1663–1669.
- A.A. Deeb, M.K. Fayyad, M.A. Alawi, Separation of polyphenols
from Jordanian olive oil mill wastewater, Chromatogr. Res. Int.,
2012 (2012) 1–8.
- A. Yangui, J.R. Njimou, A. Cicci, M. Bravi, M. Abderrabba,
A. Chianese, Competitive adsorption, selectivity and separation
of valuable hydroxytyrosol and toxic phenol from olive mill
wastewater, J. Environ. Chem. Eng., 5 (2017) 3581–3589.
- J.B. Adeoye, J. Omoleye, M.E. Ojewumi, R. Babalola, Synthesis
of Zeolite Y from kaolin using novel method of dealumination,
Int. J. Appl. Eng. Res., 12 (2017) 755–760.
- A.M. Gutierrez, T.D. Dziubla, J.Z. Hilt, Recent advances on iron
oxide magnetic nanoparticles as sorbents of organic pollutants
in water and wastewater treatment, Rev. Environ. Health,
32 (2017) 111–117.
- L. Chekli, S. Phuntsho, M. Roy, E. Lombi, E. Donner, H.K.
Shon, Assessing the aggregation behaviour of iron oxide
nanoparticles under relevant environmental conditions using a
multi-method approach, Water Res., 47 (2013) 4585–4599.
- M. Baalousha, Aggregation and disaggregation of iron oxide
nanoparticles: influence of particle concentration, pH and
natural organic matter, Sci. Total Environ., 407 (2009) 2093–2101.
- M. Parvinzadeh, S. Eslami, Optical and electromagnetic
characteristics of clay–iron oxide nanocomposites, Res. Chem.
Intermed., 37 (2011) 771–784.
- C.K. Enenebeaku, N.J. Okorocha, U.E. Enenebeaku,
B.I. Onyeachu, Adsorption of methylene blue dye onto bush
cane bark powder, Int. Lett. Chem. Phys. Astron., 76 (2017)
12–26.
- A. Dąbrowski, P. Podkościelny, Z. Hubicki, M. Barczak,
Adsorption of phenolic compounds by activated
carbon—
a critical review, Chemosphere, 58 (2005) 1049–1070.
- C.I. Fialips, S. Petit, A. Decarreau, D. Beaufort, Influence of
synthesis pH on kaolinite “crystallinity” and surface properties,
Clays Clay Miner., 48 (2000) 173–184.
- M. Nasiruddin Khan, A. Sarwar, Determination of points of
zero charge of natural and treated adsorbents, Surf. Rev. Lett.,
14 (2007) 461–469.
- J. Lützenkirchen, A. Abdelmonem, R. Weerasooriya,
F. Heberling, V. Metz, R. Marsac, Adsorption of dissolved
aluminum on sapphire-c and kaolinite: implications for points
of zero charge of clay minerals, Geochem. Trans., 15 (2014)
1–14.
- C. Appel, L.Q. Ma, R.D. Rhue, E. Kennelley, Point of zero charge
determination in soils and minerals via traditional methods
and detection of electroacoustic mobility, Geoderma, 113 (2003)
77–93.
- J.F. Garcia-Araya, F.J. Beltran, P. Alvarez, F.J. Masa, Activated
carbon adsorption of some phenolic compounds present in
agroindustrial wastewater, Adsorption, 9 (2003) 107–115.
- Y.E. Dolaksiz, F. Temel, M. Tabakci, Adsorption of phenolic
compounds onto calix[4]arene-bonded silica gels from aqueous
solutions, React. Funct. Polym., 126 (2018) 27–35.
- M. Ahmaruzzaman, Adsorption of phenolic compounds on
low-cost adsorbents: a review, Adv. Colloid Interface Sci.,
143 (2008) 48–67.
- M. Horsfall Jr., A.I. Spiff, Effects of temperature on the sorption
of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass, Electron. J. Biotechnol., 8 (2005)
43–50.
- G. Gilli, P. Gilli, Towards an unified hydrogen-bond theory,
J. Mol. Struct., 552 (2000) 1–15.
- A.M. Vindedahl, J.H. Strehlau, W.A. Arnold, R.L. Penn, Organic
matter and iron oxide nanoparticles: aggregation, interactions,
and reactivity, Environ. Sci.: Nano, 3 (2016) 494–505.
- N. Flores, F. Sharif, N. Yasri, E. Brillas, I. Sirés, E.P. Roberts,
Removal of tyrosol from water by adsorption on carbonaceous
materials and electrochemical advanced oxidation processes,
Chemosphere, 201 (2018) 807–815.
- AA. Oladipo, CuCr2O4@CaFe–LDO photocatalyst for
remarkable removal of COD from high-strength olive mill
wastewater, J. Colloid Interface Sci., 591 (2021) 193–202.
- AA. Oladipo, Rapid photocatalytic treatment of high-strength
olive mill wastewater by sunlight and UV-induced CuCr2O4@CaFe–LDO, J. Water Process Eng., 40 (2021) 101932, doi:
10.1016/j.jwpe.2021.101932.