References

  1. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater., 8 (2018) 1701503, doi: 10.1002/aenm.201701503.
  2. W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production, Appl. Catal., B, 219 (2017) 693–704.
  3. K. Kočí, M. Reli, I. Troppov, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction, Appl. Surf. Sci., 396 (2017) 1685–1695.
  4. J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2:
    a review, Appl. Surf. Sci., 392 (2017) 658–686.
  5. K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO,
    J. Alloys Compd., 727 (2017) 792–820.
  6. V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2:
    a review of recent advances, Appl. Catal., B, 244 (2019) 1021–1064.
  7. S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Black TiO2 nanomaterials: a review of recent advances, Chem. Eng. J., 343 (2018) 708–736.
  8. L.P. Domínguez-Jaimes, E.I. Cedillo-González, E. Luévano- Hipólito, J.D. Acuña-Bedoya, J.M. Hernández-López, Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures, J. Hazard. Mater., 413 (2021) 125452, doi: 10.1016/j.jhazmat.2021.125452.
  9. Y. Chen, K. Liu, Fabrication of magnetically recyclable Ce/N co-doped TiO2/NiFe2O4/diatomite ternary hybrid: improved photocatalytic efficiency under visible light irradiation, J. Alloys Compd., 868 (2021) 159432, doi:10.1016/j.jallcom.2016.12.153.
  10. J. Ni, W. Wang, D. Liu, Q. Zhu, J. Jia, J. Tian, Z. Li, X. Wang, Z. Xing, Oxygen vacancy-mediated sandwich-structural TiO2–x/ultrathin g-C3N4/TiO2–x direct Z-scheme heterojunction visible light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics, J. Hazard. Mater., 408 (2021) 124432, doi:10.1016/j.jhazmat.2020.124432.
  11. L. Gomathi Devi, R. Kavitha, A review on non-metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal., B, 140 (2013) 559–587.
  12. A. Vesel, R. Zaplotnik, G. Primc, M. Mozetič, A review of strategies for the synthesis of n-doped graphene-like materials, Nanomaterials, 10 (2020) 2286, doi: 10.3390/nano10112286.
  13. M.A. Mohamed, J. Jaafar, M. Zain, L.J. Minggu, M.B. Kassim, Concurrent growth, structural and photocatalytic properties of hybridized C, N co-doped TiO2 mixed phase over g-C3N4 nanostructured, Scr. Mater., 142 (2018) 143–147.
  14. S. Wu, X. Yu, J. Zhang, Y. Zhang, Y. Zhu, M. Zhu, Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal, Chem. Eng. J., 411 (2021) 128555, doi: 10.1016/j. cej.2021.128555.
  15. X. Hu, G. Wang, J. Wang, Z. Hu, Y. Su, Step-scheme NiO/BiOI heterojunction photocatalyst for rhodamine photodegradation, Appl. Surf. Sci., 511 (2020) 145499, doi: 10.1016/j.apsusc.2020.145499.
  16. P. Wang, Y. Liu, N. Jiang, R. Jing, S. Li, Q. Zhang, H. Liu, J. Xiu, Z. Li, Y. Liu, Double S-scheme AgBr heterojunction
    co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability, J. Mol. Liq., 329 (2021) 115540, doi: 10.1016/j.molliq.2021.115540.
  17. Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, S-scheme heterojunction photocatalyst, Chem, 6 (2020) 1543–1559.
  18. M. Ismael, A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles, Sol Energy, 211 (2020) 522–546.
  19. M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis, J. Alloys Compd., 846 (2020) 156446, doi: 10.1016/j.jallcom.2020.156446.
  20. J. Li, B. Li, Q. Li, J. Yang, The effect of N-doped form on visible light photoactivity of Z-scheme g-C3N4/TiO2 photocatalyst, Appl. Surf. Sci., 466 (2019) 268–273.
  21. Z. Tong, D. Yang, Y. Sun, Y. Nan, Z. Jiang, Tubular g-C3N4 isotype heterojunction: enhanced visible-light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer, Small, 12 (2016) 4093–4101.
  22. S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed. Engl., 55 (2016) 1830–1834.
  23. K. Li, X. Xie, W.D. Zhang, Porous graphitic carbon nitride derived from melamine-ammonium oxalate stacking sheets with excellent photocatalytic hydrogen evolution activity, ChemCatChem, 8 (2016) 2128–2135.
  24. S. Li, Y. Peng, C. Hu, Z. Chen, Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution, Appl. Catal., B, 279 (2020) 119401, doi: 10.1016/j.apcatb.2020.119401.
  25. Y. Sheng, Z. Wei, H. Miao, W. Yao, H. Li, Y. Zhu, Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst, Chem. Eng. J., 370 (2019) 287–294.
  26. C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Efficient photoelectrochemical water splitting by g-C3N4/TiO2 nanotube array heterostructures, Nano-Micro Lett., 10 (2018) 37, doi: 10.1007/s40820-018-0192-6.
  27. M.A. Mohamed, M. Zain, L.J. Minggu, M.B. Kassim, J. Jaafar, N.A.S. Amin, Y.H. Ng, Revealing the role of kapok fibre as bio-template for In-situ construction of C-doped g-C3N4@C, N co-doped TiO2 core-shell heterojunction photocatalyst and its photocatalytic hydrogen production performance, Appl. Surf. Sci., 476 (2019) 205–220.
  28. S. Wu, S. Wen, X. Xu, G. Huang, Y. Cui, J. Li, A. Qu, Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization, Appl. Surf. Sci., 436 (2018) 424–432.
  29. Q. Han, B. Wang, Y. Zhao, C. Hu, L. Qu, A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution, Angew. Chem. Int. Ed. Engl., 54 (2015) 11433–11437.
  30. Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Lei, S. Yuan, H. Li, Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy, Appl. Catal., B, 225 (2018) 154–161.
  31. S. Tan, Z. Xing, J. Zhang, Z. Li, X. Wu, J. Cui, J. Kuang, Q. Zhu, W. Zhou, Ti3+-TiO2/g-C3N4 mesostructured nanosheets heterojunctions as efficient visible-light-driven photocatalysts, J. Catal., 357 (2018) 90–99.
  32. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2, J. Mol. Catal. A: Chem., 217 (2004) 203–210.
  33. Q. Liu, X. Wang, Q. Yang, Z. Zhang, X. Fang, Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution, Appl. Surf. Sci., 450 (2018) 46–56.
  34. Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.K. Ho, Waterassisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity, Nanoscale, 7 (2015) 2471–2479.
  35. L. Shi, L. Liang, F. Wang, M. Liu, K. Chen, K. Sun, N. Zhang, J. Sun, Higher Yield urea-derived polymeric graphitic carbon nitride with mesoporous structure and superior visible-light-responsive activity, ACS Sustainable Chem. Eng., 3 (2015) 3412–3419.
  36. R. Yang, J. Cai, K. Lv, X. Wu, W. Wang, Z. Xu, M. Li, Q. Li, W. Xu, Fabrication of TiO2 hollow microspheres assembly from nanosheets (TiO2-HMSs-NSs) with enhanced photoelectric conversion efficiency in DSSCs and photocatalytic activity, Appl. Catal., B, 210 (2017) 184–193.
  37. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Appl. Catal., B, 187 (2016) 47–58.
  38. J. Yu, S. Wang, J. Low, W. Xiao, Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air, Phys. Chem. Chem. Phys., 15 (2013) 16883–16890.
  39. J. Li, M. Zhang, X. Li, Q. Li, J. Yang, Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction, Appl. Catal., B, 212 (2017) 106–114.
  40. L. Ma, G. Wang, C. Jiang, H. Bao, Q. Xu, Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light, Appl. Surf. Sci., 430 (2018) 263–272.
  41. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  42. R. Ren, Z. Wen, S. Cui, Y. Hou, X. Guo, J. Chen, Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2, Sci. Rep., 5 (2015) 10714, doi: 10.1038/srep10714.
  43. Y.T. Lin, C.H. Weng, Y.H. Lin, C.C. Shiesh, F.Y. Chen, Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst, Sep. Purif. Technol., 116 (2013) 114–123.
  44. C. Gebauer, J. Fischer, M. Wassner, Novel N, C doped Ti(IV)-oxides as Pt-free catalysts for the O2 reduction reaction, Electrochim. Acta, 146 (2014) 335–345.
  45. W. Wang, J. Fang, S. Shao, M. Lai, C. Lu, Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics, Appl. Catal., B, 217 (2017) 57–64.
  46. D. Liang, Y. Huang, F. Wu, J. Luo, X. Yi, J. Wang, X. Qiu, In situ synthesis of g-C3N4/TiO2 with {001} and {101} facets co-exposed for water remediation, Appl. Surf. Sci., 487 (2019) 322–334.
  47. J. Ma, D. Jin, Y. Li, D. Xiao, G. Jiao, Q. Liu, Y. Guo, L. Xiao, X. Chen, X. Li, J. Zhou, R. Sun, Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride, Appl. Catal., B, 283 (2021) 119520, doi: 10.1016/j.apcatb.2020.119520.
  48. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs, Nano-Micro Lett., 9 (2017) 47, doi: 10.1007/s40820-017-0148-2.
  49. Y. Duan, X. Li, K. Lv, L. Zhao, Y. Liu, Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement, Appl. Surf. Sci., 492 (2019) 166–176.
  50. Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Photocatalytic activity enhancement of core-shell structure
    g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer, Appl. Catal., B, 220 (2018) 337–347.
  51. Y. Shang, X. Chen, W. Liu, P. Tan, H. Chen, L. Wu, C. Ma, X. Xiong, J. Pan, Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method, Appl. Catal., B, 204 (2017) 78–88.
  52. X.J. Wang, W.Y. Yang, F.T. Li, Y.B. Xue, R.H. Liu, Y.J. Hao, In-situ microwave-assisted synthesis of porous
    N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties, Ind. Eng. Chem. Res., 52 (2013) 17140–17150.
  53. J. Wang, G. Wang, B. Cheng, Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation, Chin. J. Catal., 42 (2021) 56–68.