References

  1. R. Baker, Membrane Technology and Application, John Wiley & Sons, New York, 2012.
  2. B.H. Lipton, S. Bhaerman, Spontaneous Evolution – Our Positive Future and a Way to Get There From Here, Hay House Inc., USA, 2009.
  3. Z.J. Twardowski, History of hemodialyzers’ designs, Hemodialysis Int., 12 (2008) 173–210.
  4. L. Onsager, Reciprocal relations in irreversible processes. I., Phys. Rev., 37 (1931) 405–426.
  5. A. Katchalsky, P.F. Curran, Non-equilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge,1965.
  6. O. Kedem, S.R. Caplan, Degree of coupling and its relation to efficiency of energy conversion, Trans. Faraday Soc., 61 (1965) 1897–1911.
  7. S.R. Caplani, The degree of coupling and its relation to efficiency of energy conversion in multiple-flow systems, J. Theor. Biol., 10 (1965) 209–235.
  8. O. Kedem, A. Katchalsky, Permeability of composite membranes. Part 1. Electric current, volume flow and flow of solute through membrane, Trans. Faraday Soc., 59 (1961) 1918–1930.
  9. T. Hoshoko, B.D. Lindley, Phenomenological description of active transport of salt and water, J. Gener. Physiol., 50 (1967) 729–758.
  10. L. Peusner, Hierarchies of irreversible energy conversion systems. II. Why are Onsager equations? The Euclidean geometry of fluctuation–dissipation space, J. Theor. Biol., 122 (1986) 125–155.
  11. J. Meixner, Thermodynamics of electrical networks and the Onsager–Casimir reciprocal relation, J. Math. Phys., 4 (1963) 154–159.
  12. L. Peusner, The Principles of Network Thermodynamics: Theory and Biophysical Applications, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, 1970.
  13. G. Oster, A. Perelson, A. Katchalsky, Network thermodynamics, Nature, 234 (1971) 393–399.
  14. L. Peusner, Studies in Network Thermodynamics, Elsevier, Amsterdam, 1986.
  15. L. Peusner, Hierarchies of irreversible energy conversion systems: a network thermodynamics approach.
    I. Linear steady state without storage, J. Theor. Biol., 10 (1983) 27–39.
  16. L. Peusner, Hierarchies of irreversible energy conversion systems. II. Network derivation of linear transport equations, J. Theor. Biol., 115 (1985) 319–335.
  17. L. Peusner, Network representation yelding the evolution of Brownian motion with multiple particle interactions, Phys. Rev., 32 (1985) 1237–1238.
  18. L. Peusner, A network thermodynamic approach to Hill and King-Altman reaction-diffusion kinetics, J. Chem. Phys., 83 (1985) 5559–5566.
  19. K.M. Batko, I. Ślęzak-Prochazka, S. Grzegorczyn, A. Ślęzak, Membrane transport in concentration polarization conditions: network thermodynamics model equations, J. Porous Media, 17 (2014) 573–586.
  20. K.M. Batko, I. Ślęzak-Prochazka, A. Ślęzak, Network hybrid form of the Kedem–Katchalsky equations for non-homogenous binary non-electrolyte solutions: evaluation of Pij* Peusner’s tensor coefficients, Trans. Porous Media, 106 (2015) 1–20.
  21. I. Ślęzak-Prochazka, K.M. Batko, S. Wąsik, A. Ślęzak, H* Peusner’s form of the Kedem–Katchalsky equations for nonhomogeneous non-electrolyte binary solutions, Trans. Porous Media, 111 (2016) 457–477.
  22. A. Ślęzak, S. Grzegorczyn, K.M. Batko, Resistance coefficients of polymer membrane with concentration polarization, Trans. Porous Media, 95 (2012) 151–170.
  23. A. Ślęzak, S. Grzegorczyn, K.M. Batko, W.M. Bajdur, M. Włodarczyk-Makuła, Applicability of the Lr form of the Kedem–Katchalsky–Peusner equations for membranę transport in water purification technology, Desal. Water Treat., 202 (2020) 48–60.
  24. K.M. Batko, A. Ślęzak, S. Grzegorczyn, W.M. Bajdur, The Rr form of the Kedem–Katchalsky–Peusner model equations for description of the membranę transport in concentration polarization conditions, Entropy, 22 (2020) 857 (1–27), doi: 10.3390/e22080857.
  25. K.M. Batko, A. Ślęzak, W. Pilis, Evaluation of transport properties of biomembranes by means of Peusner network thermodynamics, Acta Bioeng. Biomech., 2 (2021) 63–72.
  26. K.S. Spiegler, Transport process in ionic membranes, Trans. Faraday Soc., 54 (1958) 1408–1428.
  27. K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  28. O. Kedem, A. Katchalsky, A physical interpretation of the phenomenological coefficients of membrane permeabilty, J. Gen. Physiol., 45 (1961) 143–179.
  29. A. Ślęzak, A frictional interpretation of the phenomenological coefficients of the membranę permeability for mlticomponent non-ionic solutions, J. Biol. Phys., 23 (1997) 239–250.
  30. A. Ślęzak, B. Turczyński, Generalization of the Spiegler–Kedem– Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions, Biophys. Chem., 44 (1992) 139–142.
  31. A. Ślęzak, S. Grzegorczyn, J. Wąsik, Model equations for interactions of hydrated species transmembrane transport, Desalination, 163 (2004) 177–192.
  32. H. Klinkman, M. Holtz, W. Willgerodt, G. Wilke, D. Schoenfelder, Nephrophan – eine neue dialysemembran, Zeitschrift für Urologie, 4 (1969) 285–292.