References
- R. Baker, Membrane Technology and Application, John Wiley &
Sons, New York, 2012.
- B.H. Lipton, S. Bhaerman, Spontaneous Evolution – Our
Positive Future and a Way to Get There From Here, Hay House
Inc., USA, 2009.
- Z.J. Twardowski, History of hemodialyzers’ designs,
Hemodialysis Int., 12 (2008) 173–210.
- L. Onsager, Reciprocal relations in irreversible processes. I.,
Phys. Rev., 37 (1931) 405–426.
- A. Katchalsky, P.F. Curran, Non-equilibrium Thermodynamics
in Biophysics, Harvard University Press, Cambridge,1965.
- O. Kedem, S.R. Caplan, Degree of coupling and its relation to
efficiency of energy conversion, Trans. Faraday Soc., 61 (1965)
1897–1911.
- S.R. Caplani, The degree of coupling and its relation to efficiency
of energy conversion in multiple-flow systems, J. Theor. Biol.,
10 (1965) 209–235.
- O. Kedem, A. Katchalsky, Permeability of composite membranes.
Part 1. Electric current, volume flow and flow of solute through
membrane, Trans. Faraday Soc., 59 (1961) 1918–1930.
- T. Hoshoko, B.D. Lindley, Phenomenological description of
active transport of salt and water, J. Gener. Physiol., 50 (1967)
729–758.
- L. Peusner, Hierarchies of irreversible energy conversion
systems. II. Why are Onsager equations? The Euclidean
geometry of fluctuation–dissipation space, J. Theor. Biol.,
122 (1986) 125–155.
- J. Meixner, Thermodynamics of electrical networks and the
Onsager–Casimir reciprocal relation, J. Math. Phys., 4 (1963)
154–159.
- L. Peusner, The Principles of Network Thermodynamics:
Theory and Biophysical Applications, Ph.D. Thesis, Harvard
University, Cambridge, Massachusetts, 1970.
- G. Oster, A. Perelson, A. Katchalsky, Network thermodynamics,
Nature, 234 (1971) 393–399.
- L. Peusner, Studies in Network Thermodynamics, Elsevier,
Amsterdam, 1986.
- L. Peusner, Hierarchies of irreversible energy conversion
systems: a network thermodynamics approach.
I. Linear steady
state without storage, J. Theor. Biol., 10 (1983) 27–39.
- L. Peusner, Hierarchies of irreversible energy conversion
systems. II. Network derivation of linear transport equations,
J. Theor. Biol., 115 (1985) 319–335.
- L. Peusner, Network representation yelding the evolution
of Brownian motion with multiple particle interactions,
Phys. Rev., 32 (1985) 1237–1238.
- L. Peusner, A network thermodynamic approach to Hill and
King-Altman reaction-diffusion kinetics, J. Chem. Phys.,
83 (1985) 5559–5566.
- K.M. Batko, I. Ślęzak-Prochazka, S. Grzegorczyn, A. Ślęzak,
Membrane transport in concentration polarization conditions:
network thermodynamics model equations, J. Porous Media,
17 (2014) 573–586.
- K.M. Batko, I. Ślęzak-Prochazka, A. Ślęzak, Network hybrid
form of the Kedem–Katchalsky equations for non-homogenous
binary non-electrolyte solutions: evaluation of Pij* Peusner’s
tensor coefficients, Trans. Porous Media, 106 (2015) 1–20.
- I. Ślęzak-Prochazka, K.M. Batko, S. Wąsik, A. Ślęzak,
H* Peusner’s form of the Kedem–Katchalsky equations for nonhomogeneous
non-electrolyte binary solutions, Trans. Porous
Media, 111 (2016) 457–477.
- A. Ślęzak, S. Grzegorczyn, K.M. Batko, Resistance coefficients
of polymer membrane with concentration polarization, Trans.
Porous Media, 95 (2012) 151–170.
- A. Ślęzak, S. Grzegorczyn, K.M. Batko, W.M. Bajdur,
M. Włodarczyk-Makuła, Applicability of the Lr form of the
Kedem–Katchalsky–Peusner equations for membranę transport
in water purification technology, Desal. Water Treat., 202 (2020)
48–60.
- K.M. Batko, A. Ślęzak, S. Grzegorczyn, W.M. Bajdur, The Rr
form of the Kedem–Katchalsky–Peusner model equations
for description of the membranę transport in concentration
polarization conditions, Entropy, 22 (2020) 857 (1–27),
doi: 10.3390/e22080857.
- K.M. Batko, A. Ślęzak, W. Pilis, Evaluation of transport
properties of biomembranes by means of Peusner network
thermodynamics, Acta Bioeng. Biomech., 2 (2021) 63–72.
- K.S. Spiegler, Transport process in ionic membranes, Trans.
Faraday Soc., 54 (1958) 1408–1428.
- K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration
(reverse osmosis): criteria for efficient membranes, Desalination,
1 (1966) 311–326.
- O. Kedem, A. Katchalsky, A physical interpretation of the
phenomenological coefficients of membrane permeabilty,
J. Gen. Physiol., 45 (1961) 143–179.
- A. Ślęzak, A frictional interpretation of the phenomenological
coefficients of the membranę permeability for mlticomponent
non-ionic solutions, J. Biol. Phys., 23 (1997) 239–250.
- A. Ślęzak, B. Turczyński, Generalization of the Spiegler–Kedem–
Katchalsky frictional model equations of the transmembrane
transport for multicomponent non-electrolyte solutions,
Biophys. Chem., 44 (1992) 139–142.
- A. Ślęzak, S. Grzegorczyn, J. Wąsik, Model equations for
interactions of hydrated species transmembrane transport,
Desalination, 163 (2004) 177–192.
- H. Klinkman, M. Holtz, W. Willgerodt, G. Wilke, D. Schoenfelder,
Nephrophan – eine neue dialysemembran, Zeitschrift für
Urologie, 4 (1969) 285–292.