References

  1. L. Centa Malucelli, L. Gustavo Lacerda, M. Dziedzic, M. Aurélio da Silva Carvalho Filho, Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research, Rev. Environ. Sci. Biotechnol., 16 (2017) 131–145.
  2. T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina, J. Colloid Interface Sci., 333 (2009) 14–26.
  3. A. Mautner, H.A. Maples, H. Sehaqui, T. Zimmermann, U. Perez de Larraya, A.P. Mathew, C.Y. Lai, K. Li, A. Bismarck, Nitrate removal from water using a nanopaper ion-exchanger, Environ. Sci. Water Res. Technol., 2 (2016) 117–124.
  4. S. Larous, A.H. Meniai, M.B. Lehocine, Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination, 185 (2005) 483–490.
  5. F. Ekmekyapar, A. Aslan, Y.K. Bayhan, A. Cakici, Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm, J. Hazard. Mater., 137 (2006) 293–298.
  6. N. Benzidia, A. Salhi, S. Bakkas, L. Khamliche, Biosorption of copper Cu(II) in aqueous solution by chemically modified crushed marine algae (Bifurcaria bifurcata): equilibrium and kinetic studies, Mediterr. J. Chem., 4 (2015) 85–92.
  7. S. Pietrzyk, B. Tora, Trends in global copper mining – a review, IOP Conf. Ser.: Mater. Sci. Eng., 427 (2018) 012002.
  8. USEPA, EPA-822-R-01–001, Update of Ambient Water Quality Criteria for Copper, United States Environmental Protection Agency, April, 2001.
  9. G.R. de Freitas, M.G.C. da Silva, M.G.A. Vieira, Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents, Environ. Sci. Pollut. Res., 26 (2019) 19097–19118.
  10. M.S. Abdel-Raouf, A.R.M. Abdul-Raheim, Removal of heavy metals from industrial waste water by biomass-based materials: a review, J. Pollut. Eff. Control, 5 (2017) 1–13.
  11. A. Tripathi, M.R. Ranjan, Heavy metal removal from wastewater using low cost adsorbents, J. Biorem. Biodegrad., 6 (2015) 1–5.
  12. S. Ida, T. Eva, Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: a review, Water, 13 (2021) 1121, doi: 10.3390/w13081121.
  13. N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
  14. M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
  15. A.R. Lucaci, D. Bulgariu, M.-C. Popescu, L. Bulgariu, Adsorption of Cu(II) ions on adsorbent materials obtained from marine red algae Callithamnion corymbosum sp., Water, 12 (2020) 372, doi: 10.3390/w12020372.
  16. E. Kafkas, M. Koşar, N. Türemiş, K.H.C. Başer, Analysis of sugars, organic acids and vitamin C contents of blackberry genotypes from Turkey, Food Chem., 97 (2006) 732–736.
  17. M.J. Cho, L.R. Howard, R.L. Prior, J.R. Clark, Flavonoid glycosides and antioxidant capacity of various blackberry and red grape genotypes determined by high-performance liquid chromatogrphy/mass spectrometry, J. Sci. Food Agric., 84 (2004) 1771–1782.
  18. B.C. Strik, J.R. Clark, C.E. Finn, M.P. Bañados, Worldwide Blackberry Production, HortTechnology, 17 (2007) 205–213.
  19. Blackberry, Overview of Global Blackberry Market. Available at: https://www.tridge.com/intelligences/blackberry (accessed: November 17, 2020).
  20. N.A. Sagar, S. Pareek, S. Sharma, E.M. Yahia, M.G. Lobo, Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization, Compr. Rev. Food Sci. Food Saf., 17 (2018) 512–531.
  21. USDA, National Nutrient Database, United States Department of Agriculture, 2021. Available at: http://fdc.nal.usda.gov (accessed June 10, 2021).
  22. C. Mertz, V. Cheynier, Z. Günata, P. Brat, Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry, J. Agric. Food Chem., 55 (2007) 8616–8624.
  23. S. Sellappan, C.C. Akoh, G. Krewer, Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries, J. Agric. Food Chem., 50 (2002) 2432–2438.
  24. F. Vaillant, Chapter 25 – Blackberries, A.K. Jaiswal, Ed., Nutritional Composition and Antioxidant Properties of Fruits and Vegetables, Academic Press, London, United Kingdom, 2020, pp. 407–422, doi: 10.1016/B978-0-12-812780-3.00025-8.
  25. H. Jiao, S.Y. Wang, Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry, J. Agric. Food Chem., 48 (2000) 5672–5676.
  26. M.A. Romero Rodriguez, M.L. Vazquez Oderiz, J. Lopez Hernandez, J. Simal Lozano, Determination of vitamin C and organic acids in various fruits by HPLC, J. Chromatogr. Sci., 30 (1992) 433–437.
  27. M. Zia-Ul-Haq, M. Riaz, V. De Feo, H.Z.E. Jaafar, M. Moga, Rubus fruticosus L.: constituents, biological activities and health related uses, Molecules, 19 (2014) 10998–11029.
  28. T.J. Hager, L.R. Howard, R. Liyanage, J.O. Lay, R.L. Prior, Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS, J. Agric. Food Chem., 56 (2008) 661–669.
  29. C. García-Muñoz, F. Vaillant, Metabolic fate of ellagitannins: implications for health, and research perspectives for innovative functional foods, Crit. Rev. Food Sci. Nutr., 54 (2014) 1584–1598.
  30. J. Lee, M. Dossett, C.E. Finn, Rubus fruit phenolic research: the good, the bad, and the confusing, Food Chem., 130 (2012) 785–796.
  31. L. Kaume, L.R. Howard, L. Devareddy, The blackberry fruit: a review on its composition and chemistry, metabolism and bioavailability, and health benefits, J. Agric. Food Chem., 60 (2012) 5716–5727.
  32. E.O. Cuevas-Rodríguez, G.G. Yousef, P.A. García-Saucedo, J. López-Medina, O. Paredes-López, M.A. Lila, Characterization of anthocyanins and proanthocyanidins in wild and domesticated Mexican blackberries (Rubus spp.), J. Agric. Food Chem., 58 (2010) 7458–7464.
  33. W.M. Mazur, M. Uehara, K. Wähälä, H. Adlercreutz, Phytooestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberrymeal in human subjects, Br. J. Nutr., 83 (2000) 381–387.
  34. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54 (1982) 2201–2218.
  35. A.C. Jacques, F.C. Chaves, R.C. Zambiazi, M.C. Brasil, E.B. Caramão, Bioactive and volatile organic compounds in Southern Brazilian blackberry (Rubus fruticosus) fruit cv. Tupy, Food Sci. Technol., 34 (2014) 636–643.
  36. F.M. Cui, X.Y. Zhang, L.M. Shang, Thermogravimetric analysis of biomass pyrolysis under different atmospheres, Appl. Mech. Mater., 448–453 (2013) 1616–1619.
  37. T. Kalak, J. Dudczak-Halabuda, Y. Tachibana, R. Cierpiszewski, Residual biomass of gooseberry (Ribes uva-crispa L.) for the bioremoval process of Fe(III) ions, Desal. Water Treat., 202 (2020) 345–354.
  38. I. Ostolska, M. Wiśniewska, Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids, Colloid Polym. Sci., 292 (2014) 2453–2464.
  39. H. Ohshima, Limiting electrophoretic mobility of a highly charged particle in an electrolyte solution: solidification effect, J. Colloid Interface Sci., 349 (2010) 641–644.
  40. M. Erdemoglu, M. Sarikaya, Effects of heavy metals and oxalate on the zeta potential of magnetite, J. Colloid Interface Sci., 300 (2006) 795–804.
  41. Ö. Demirbaş, M. Alkan, M. Doğan, Y. Turhan, H. Namli, P. Turan, Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilane, J. Hazard. Mater., 149 (2007) 650–656.
  42. T. Kalak, A. Kłopotek, R. Cierpiszewski, Effective adsorption of lead ions using fly ash obtained in the novel circulating fluidized bed combustion technology, Microchem. J., 145 (2019) 1011–1025.
  43. A.A. Al-Homaidan, H.J. Al-Houri, A.A. Al-Hazzani, G. Elgaaly, N.M.S. Moubayed, Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass, Arabian J. Chem., 7 (2014) 57–62.
  44. K. Naseem, R. Huma, A. Shahbaz, J. Jamal, M.Z. Ur Rehman, A. Sharif, E. Ahmed, R. Begum, A. Irfan, A. Al-Sehemi, Z.H. Farooqi,. Extraction of heavy metals from aqueous medium by husk biomass: adsorption isotherm, kinetic and thermodynamic study, Z. Phys. Chem., 233 (2018) 201–223.
  45. S. Aslan, S. Yildiz, M. Ozturk, Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dried activated sludge biomass, Pol. J. Chem. Technol., 20 (2018) 20–28.
  46. H.A. El-Araby, A.M. Ibrahim, A. Mangood, A. Abdel-Rahman, Sesame husk as adsorbent for copper(II) ions removal from aqueous solution, J. Geosci. Environ. Prot., 5 (2017) 109–152.
  47. R. Nadeem, M.A. Hanif, A. Mahmood, M.S. Jamil, M. Ashraf, Biosorption of Cu(II) ions from aqueous effluents by blackgram bran (BGB), J. Hazard. Mater., 168 (2009) 1622–1625.
  48. V. Mînzatu, C.-M. Davidescu, P. Negrea, M. Ciopec, C. Muntean, I. Hulka, C. Paul, A. Negrea, N. Duteanu, Synthesis, characterization and adsorptive performances of a composite material based on carbon and iron oxide particles, Int. J. Mol. Sci., 20 (2019) 1609–1621.
  49. N.S. Langeroodi, Z. Farhadravesh, A.D. Khalaji, Optimization of adsorption parameters for Fe(III) ions removal from aqueous solutions by transition metal oxide nanocomposite, Green Chem. Lett. Rev., 11 (2018) 404–413.
  50. T.C. Egbosiuba, A.S. Abdulkareem, A.S. Kovo, E.A. Afolabi, J.O. Tijani, M.T. Bankole, S. Bo, W.D. Roos, Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process, Sci. Rep., 11 (2021) 2045–2322.
  51. K. Mathivanan, R. Rajaram, V. Balasubramanian, Biosorption of Cd(II) and Cu(II) ions using Lysinibacillus fusiformis KMNTT-10: equilibrium and kinetic studies, Desal. Water Treat., 57 (2016) 22429–22440.
  52. M. Salman, R. Rehman, U. Farooq, A. Tahir, L. Mitu, Biosorptive removal of cadmium(II) and copper(II) using microwave-assisted thiourea-modified Sorghum bicolor agrowaste, J. Chem., 2020 (2020) 8269643, doi: 10.1155/2020/8269643.
  53. T. Kalak, J. Dudczak-Hałabuda, Y. Tachibana, R. Cierpiszewski, Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions, Chemosphere, 246 (2020) 125744, doi: 10.1016/j.chemosphere.2019.125744.
  54. L. Dong, Z. Diao, J. Du, Z. Jiang, Q. Meng, Y. Zhang, Mechanism of Cu(II) Biosorption by Saccharomyces cerevisiae, 3rd International Conference on Bioinformatics and Biomedical Engineering, IEEE, Beijing, China, 2009, pp. 1–4.
  55. C. Tu, Y. Liu, J. Wei, L. Li, K.G. Scheckel, Y. Luo, Characterization and mechanism of copper biosorption by a highly copperresistant fungal strain isolated from copper-polluted acidic orchard soil, Environ. Sci. Pollut. Res. Int., 25 (2018) 24965–24974.
  56. J.B. Dulla, M.R. Tamana, S. Boddu, K. Pulipati, K. Srirama, Biosorption of copper(II) onto spent biomass of Gelidiella acerosa (brown marine algae): optimization and kinetic studies, Appl. Water Sci., 10 (2020) 56, doi:10.1007/s13201-019-1125-3.
  57. M. Isam, L. Baloo, S.R.M. Kutty, S. Yavari, Optimisation and modelling of Pb(II) and Cu(II) biosorption onto red algae (Gracilaria changii) by using response surface methodology, Water, 11 (2019) 2325, doi:10.3390/w11112325.
  58. X.H. Wang, R.H. Song, S.X. Teng, M.M. Gao, J.Y. Ni, F.F. Liu, S.G. Wang, B.Y. Gao, Characteristics and mechanisms of Cu(II) biosorption by disintegrated aerobic granules, J. Hazard. Mater., 179 (2010) 431–437.
  59. J.M. do Nascimento, J.D. de Oliveira, A.C.L. Rizzo, S.G.F. Leite, Biosorption Cu(II) by the yeast Saccharomyces cerevisiae, Biotechnol. Rep., 21 (2019) e00315, doi: 10.1016/ j.btre.2019.e00315.
  60. O.A. Mohamad, X. Hao, P. Xie, S. Hatab, Y. Lin, G. Wei, Biosorption of copper(II) from aqueous solution using nonliving Mesorhizobium amorphae strain CCNWGS0123, Microbes Environ., 3 (2012) 234–241.
  61. Z. Velkova, M. Stoytcheva, V. Gochev, Biosorption of Cu(II) onto chemically modified waste mycelium of Aspergillus awamori: equilibrium, kinetics and modeling studies, J. Biosci. Biotech., 1 (2012) 163–169.
  62. A. Dąbrowski, Adsorption – from theory to practice, Adv. Colloid Interface Sci., 93 (2001) 135–224.
  63. Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
  64. W.S.W. Ngah, M.A.K.M. Hanafiah, Surface modification of rubber (Hevea brasiliensis) leaves for the adsorption of copper ions: kinetic, thermodynamic and binding mechanisms, J. Chem. Technol. Biotechnol., 84 (2009) 192–201.
  65. P. Salehi, B. Asghari, F. Mohammadi, Removal of heavy metals from aqueous solutions by Cercis siliquastrum L., J. Iran. Chem. Soc., 5 (2008) 80–86.
  66. A.S.A. Aziz, L.A. Manaf, H.C. Man, N.S. Kumar, Kinetic modeling and isotherm studies for copper(II) adsorption onto palm oil boiler mill fly ash (POFA) as a natural low-cost adsorbent, BioResources, 9 (2013) 336–356.
  67. H.I. Owamah, Biosorptive removal of Pb(II) and Cu(II) from wastewater using activated carbon from cassava peels, J. Mater. Cycles Waste Manage., 16 (2014) 347–358.
  68. E. Pehlivan, T. Altun, Ş. Parlayici, Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution, Food Chem., 135 (2012) 2229–2234.
  69. T. Longlong, L. Dan, H. Lingxin, C. Shiwei, Q. Wei, L. Jing, W. Qiang, L. Zhan, W. Wang-suo, One-pot hydrothermal synthesis of carbonaceous nanocomposites for efficient decontamination of copper, RSC Adv., 5 (2015) 98041–98049.
  70. A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies, J. Hazard. Mater., 185 (2011) 1177–1186.
  71. X. Ren, J. Li, X. Tan, X. Wang, Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination, Dalton Trans., 42 (2013) 5266–5274.
  72. G. Huang, W. Wang, X. Mi, W. Xie, Y. Liu, J. Gao, Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions, Carbon, 50 (2012) 4856–4864.
  73. R. Demir-Cakan, N. Baccile, M. Antonietti, M.M. Titirici, Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid, Chem. Mater., 21 (2009) 484–490.
  74. C.-Y. Kuo, Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes, Desalination, 249 (2009) 781–785.
  75. U. Maheshwari, B. Mathesan, S. Gupta, Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): kinetic, thermodynamics and mass transfer mechanism, Process Saf. Environ. Prot., 98 (2015) 198–210.
  76. N. Fiol, I. Villaescusa, M. Martínez, N. Miralles, J. Poch, J. Serarols, Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol., 50 (2006) 132–140.
  77. N. Feng, X. Guo, S. Liang, Adsorption study of copper(II) by chemically modified orange peel, J. Hazard. Mater., 164 (2009) 1286–1292.
  78. J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. da Cunha, N.F. Cardoso, J.L. Brasil, S.L.P. Dias, Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions, J. Hazard. Mater., 162 (2009) 270–280.
  79. P. Tasaso, Adsorption of copper using pomelo peel and depectinated pomelo peel, J. Clean Energy Technol.,
    2 (2014) 154–157.
  80. T. Aman, A.A. Kazi, M.U. Sabri, Q. Bano, Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent, Colloids Surf., B, 63 (2008) 116–121.
  81. M. Kaur, P. Sharma, S. Kumari, Equilibrium studies for copper removal from aqueous solution using nanoadsorbent synthesized from rice husk, SN Appl. Sci., 1 (2019) 988, doi: 10.1007/s42452-019-1024-0.
  82. H. Aydın, Y. Bulut, Ç. Yerlikaya, Removal of copper(II) from aqueous solution by adsorption onto low-cost adsorbents, J. Environ. Manage., 87 (2008) 37–45.
  83. A. Witek-Krowiak, Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process, Chem. Eng. J., 192 (2012) 13–20.
  84. C.C. Ferrari, C.P. Ribeiro, A.M. Liserre, I. Moreno, S.P.M. Germer, J.M. de Aguirre, Spray Drying of Blackberry Juice using Maltodextrin or Gum Arabic as Carrier Agents, 6th International CIGR Technical Symposium – Towards a Sustainable Food Chain: Food Process, Bioprocessing and Food Quality Management, Nantes, France, April 18–20, 2011.
  85. K.Y. Lou, A.U. Rajapaksha, Y.S. Ok, S.X. Chang, Sorption of copper(II) from synthetic oil sands process-affected water (OSPW) by pine sawdust biochars: effects of pyrolysis temperature and steam activation, J. Soils Sediments, 16 (2016) 2081–2089.
  86. S. Zhao, N. Ta, X. Wang, Absorption of Cu(II) and Zn(II) from aqueous solutions onto biochars derived from apple tree branches, Energies, 13 (2020) 3498, doi: 10.3390/en13133498.
  87. A.H. Sulaymon, A.A. Mohammed, T.J. Al-Musawi, Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies, Desal. Water Treat., 51 (2013) 4424–4434.
  88. J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  89. A.G. Caporale, M. Pigna, A. Sommella, P. Conte, Effect of pruning-derived biochar on heavy metals removal and water dynamics, Biol. Fertil. Soils, 50 (2014) 1211–1222.
  90. A. Bogusz, P. Oleszczuk, R. Dobrowolski, Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water, Bioresour. Technol., 196 (2015) 540–549.