References
- L. Centa Malucelli, L. Gustavo Lacerda, M. Dziedzic, M. Aurélio
da Silva Carvalho Filho, Preparation, properties and future
perspectives of nanocrystals from agro-industrial residues:
a review of recent research, Rev. Environ. Sci. Biotechnol.,
16 (2017) 131–145.
- T.K. Naiya, A.K. Bhattacharya, S.K. Das, Adsorption of Cd(II)
and Pb(II) from aqueous solutions on activated alumina,
J. Colloid Interface Sci., 333 (2009) 14–26.
- A. Mautner, H.A. Maples, H. Sehaqui, T. Zimmermann,
U. Perez de Larraya, A.P. Mathew, C.Y. Lai, K. Li, A. Bismarck,
Nitrate removal from water using a nanopaper ion-exchanger,
Environ. Sci. Water Res. Technol., 2 (2016) 117–124.
- S. Larous, A.H. Meniai, M.B. Lehocine, Experimental study of
the removal of copper from aqueous solutions by adsorption
using sawdust, Desalination, 185 (2005) 483–490.
- F. Ekmekyapar, A. Aslan, Y.K. Bayhan, A. Cakici, Biosorption of
copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm, J. Hazard. Mater., 137 (2006) 293–298.
- N. Benzidia, A. Salhi, S. Bakkas, L. Khamliche, Biosorption
of copper Cu(II) in aqueous solution by chemically modified
crushed marine algae (Bifurcaria bifurcata): equilibrium and
kinetic studies, Mediterr. J. Chem., 4 (2015) 85–92.
- S. Pietrzyk, B. Tora, Trends in global copper mining – a review,
IOP Conf. Ser.: Mater. Sci. Eng., 427 (2018) 012002.
- USEPA, EPA-822-R-01–001, Update of Ambient Water Quality
Criteria for Copper, United States Environmental Protection
Agency, April, 2001.
- G.R. de Freitas, M.G.C. da Silva, M.G.A. Vieira, Biosorption
technology for removal of toxic metals: a review of commercial
biosorbents and patents, Environ. Sci. Pollut. Res., 26 (2019)
19097–19118.
- M.S. Abdel-Raouf, A.R.M. Abdul-Raheim, Removal of heavy
metals from industrial waste water by biomass-based
materials: a review, J. Pollut. Eff. Control, 5 (2017) 1–13.
- A. Tripathi, M.R. Ranjan, Heavy metal removal from
wastewater using low cost adsorbents, J. Biorem. Biodegrad.,
6 (2015) 1–5.
- S. Ida, T. Eva, Removal of heavy metals during primary treatment
of municipal wastewater and possibilities of enhanced
removal: a review, Water, 13 (2021) 1121, doi: 10.3390/w13081121.
- N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent
trends of heavy metal removal from water/wastewater by
membrane technologies, J. Ind. Eng. Chem., 76 (2019) 17–38.
- M.A. Barakat, New trends in removing heavy metals from
industrial wastewater, Arabian J. Chem., 4 (2011) 361–377.
- A.R. Lucaci, D. Bulgariu, M.-C. Popescu, L. Bulgariu,
Adsorption of Cu(II) ions on adsorbent materials obtained
from marine red algae Callithamnion corymbosum sp., Water,
12 (2020) 372, doi: 10.3390/w12020372.
- E. Kafkas, M. Koşar, N. Türemiş, K.H.C. Başer, Analysis of
sugars, organic acids and vitamin C contents of blackberry
genotypes from Turkey, Food Chem., 97 (2006) 732–736.
- M.J. Cho, L.R. Howard, R.L. Prior, J.R. Clark, Flavonoid
glycosides and antioxidant capacity of various blackberry
and red grape genotypes determined by high-performance
liquid chromatogrphy/mass spectrometry, J. Sci. Food Agric.,
84 (2004) 1771–1782.
- B.C. Strik, J.R. Clark, C.E. Finn, M.P. Bañados, Worldwide
Blackberry Production, HortTechnology, 17 (2007) 205–213.
- Blackberry, Overview of Global Blackberry Market. Available
at: https://www.tridge.com/intelligences/blackberry (accessed:
November 17, 2020).
- N.A. Sagar, S. Pareek, S. Sharma, E.M. Yahia, M.G. Lobo, Fruit
and vegetable waste: bioactive compounds, their extraction,
and possible utilization, Compr. Rev. Food Sci. Food Saf.,
17 (2018) 512–531.
- USDA, National Nutrient Database, United States Department
of Agriculture, 2021. Available at: http://fdc.nal.usda.gov
(accessed June 10, 2021).
- C. Mertz, V. Cheynier, Z. Günata, P. Brat, Analysis of phenolic
compounds in two blackberry species (Rubus glaucus and Rubus
adenotrichus) by high-performance liquid chromatography
with diode array detection and electrospray ion trap mass
spectrometry, J. Agric. Food Chem., 55 (2007) 8616–8624.
- S. Sellappan, C.C. Akoh, G. Krewer, Phenolic compounds
and antioxidant capacity of Georgia-grown blueberries and
blackberries, J. Agric. Food Chem., 50 (2002) 2432–2438.
- F. Vaillant, Chapter 25 – Blackberries, A.K. Jaiswal, Ed.,
Nutritional Composition and Antioxidant Properties of Fruits
and Vegetables, Academic Press, London, United Kingdom,
2020, pp. 407–422, doi: 10.1016/B978-0-12-812780-3.00025-8.
- H. Jiao, S.Y. Wang, Correlation of antioxidant capacities to
oxygen radical scavenging enzyme activities in blackberry,
J. Agric. Food Chem., 48 (2000) 5672–5676.
- M.A. Romero Rodriguez, M.L. Vazquez Oderiz, J. Lopez
Hernandez, J. Simal Lozano, Determination of vitamin C and
organic acids in various fruits by HPLC, J. Chromatogr. Sci.,
30 (1992) 433–437.
- M. Zia-Ul-Haq, M. Riaz, V. De Feo, H.Z.E. Jaafar, M. Moga,
Rubus fruticosus L.: constituents, biological activities and health
related uses, Molecules, 19 (2014) 10998–11029.
- T.J. Hager, L.R. Howard, R. Liyanage, J.O. Lay, R.L. Prior,
Ellagitannin composition of blackberry as determined by
HPLC-ESI-MS and MALDI-TOF-MS, J. Agric. Food Chem.,
56 (2008) 661–669.
- C. García-Muñoz, F. Vaillant, Metabolic fate of ellagitannins:
implications for health, and research perspectives for
innovative functional foods, Crit. Rev. Food Sci. Nutr., 54 (2014)
1584–1598.
- J. Lee, M. Dossett, C.E. Finn, Rubus fruit phenolic research:
the good, the bad, and the confusing, Food Chem., 130 (2012)
785–796.
- L. Kaume, L.R. Howard, L. Devareddy, The blackberry fruit:
a review on its composition and chemistry, metabolism and
bioavailability, and health benefits, J. Agric. Food Chem.,
60 (2012) 5716–5727.
- E.O. Cuevas-Rodríguez, G.G. Yousef, P.A. García-Saucedo,
J. López-Medina, O. Paredes-López, M.A. Lila, Characterization
of anthocyanins and proanthocyanidins in wild and
domesticated Mexican blackberries (Rubus spp.), J. Agric. Food
Chem., 58 (2010) 7458–7464.
- W.M. Mazur, M. Uehara, K. Wähälä, H. Adlercreutz, Phytooestrogen
content of berries, and plasma concentrations and
urinary excretion of enterolactone after a single strawberrymeal
in human subjects, Br. J. Nutr., 83 (2000) 381–387.
- K.S.W. Sing, Reporting physisorption data for gas/solid
systems with special reference to the determination of surface
area and porosity, Pure Appl. Chem., 54 (1982) 2201–2218.
- A.C. Jacques, F.C. Chaves, R.C. Zambiazi, M.C. Brasil,
E.B. Caramão, Bioactive and volatile organic compounds in
Southern Brazilian blackberry (Rubus fruticosus) fruit cv. Tupy,
Food Sci. Technol., 34 (2014) 636–643.
- F.M. Cui, X.Y. Zhang, L.M. Shang, Thermogravimetric analysis
of biomass pyrolysis under different atmospheres, Appl.
Mech. Mater., 448–453 (2013) 1616–1619.
- T. Kalak, J. Dudczak-Halabuda, Y. Tachibana, R. Cierpiszewski,
Residual biomass of gooseberry (Ribes uva-crispa L.) for
the bioremoval process of Fe(III) ions, Desal. Water Treat.,
202 (2020) 345–354.
- I. Ostolska, M. Wiśniewska, Application of the zeta potential
measurements to explanation of colloidal Cr2O3 stability
mechanism in the presence of the ionic polyamino acids,
Colloid Polym. Sci., 292 (2014) 2453–2464.
- H. Ohshima, Limiting electrophoretic mobility of a highly
charged particle in an electrolyte solution: solidification effect,
J. Colloid Interface Sci., 349 (2010) 641–644.
- M. Erdemoglu, M. Sarikaya, Effects of heavy metals and oxalate
on the zeta potential of magnetite, J. Colloid Interface Sci., 300
(2006) 795–804.
- Ö. Demirbaş, M. Alkan, M. Doğan, Y. Turhan, H. Namli,
P. Turan, Electrokinetic and adsorption properties of sepiolite
modified by 3-aminopropyltriethoxysilane, J. Hazard. Mater.,
149 (2007) 650–656.
- T. Kalak, A. Kłopotek, R. Cierpiszewski, Effective adsorption
of lead ions using fly ash obtained in the novel circulating
fluidized bed combustion technology, Microchem. J., 145 (2019)
1011–1025.
- A.A. Al-Homaidan, H.J. Al-Houri, A.A. Al-Hazzani, G. Elgaaly,
N.M.S. Moubayed, Biosorption of copper ions from aqueous
solutions by Spirulina platensis biomass, Arabian J. Chem.,
7 (2014) 57–62.
- K. Naseem, R. Huma, A. Shahbaz, J. Jamal, M.Z. Ur Rehman,
A. Sharif, E. Ahmed, R. Begum, A. Irfan, A. Al-Sehemi,
Z.H. Farooqi,. Extraction of heavy metals from aqueous
medium by husk biomass: adsorption isotherm, kinetic and
thermodynamic study, Z. Phys. Chem., 233 (2018) 201–223.
- S. Aslan, S. Yildiz, M. Ozturk, Biosorption of Cu2+ and Ni2+ ions
from aqueous solutions using waste dried activated sludge
biomass, Pol. J. Chem. Technol., 20 (2018) 20–28.
- H.A. El-Araby, A.M. Ibrahim, A. Mangood, A. Abdel-Rahman,
Sesame husk as adsorbent for copper(II) ions removal from
aqueous solution, J. Geosci. Environ. Prot., 5 (2017) 109–152.
- R. Nadeem, M.A. Hanif, A. Mahmood, M.S. Jamil, M. Ashraf,
Biosorption of Cu(II) ions from aqueous effluents by blackgram
bran (BGB), J. Hazard. Mater., 168 (2009) 1622–1625.
- V. Mînzatu, C.-M. Davidescu, P. Negrea, M. Ciopec,
C. Muntean, I. Hulka, C. Paul, A. Negrea, N. Duteanu, Synthesis,
characterization and adsorptive performances of a composite
material based on carbon and iron oxide particles, Int. J. Mol.
Sci., 20 (2019) 1609–1621.
- N.S. Langeroodi, Z. Farhadravesh, A.D. Khalaji, Optimization
of adsorption parameters for Fe(III) ions removal from
aqueous solutions by transition metal oxide nanocomposite,
Green Chem. Lett. Rev., 11 (2018) 404–413.
- T.C. Egbosiuba, A.S. Abdulkareem, A.S. Kovo, E.A. Afolabi,
J.O. Tijani, M.T. Bankole, S. Bo, W.D. Roos, Adsorption of
Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated
MWCNTs in a batch and fixed bed process, Sci. Rep., 11 (2021)
2045–2322.
- K. Mathivanan, R. Rajaram, V. Balasubramanian, Biosorption of
Cd(II) and Cu(II) ions using Lysinibacillus fusiformis KMNTT-10:
equilibrium and kinetic studies, Desal. Water Treat., 57 (2016)
22429–22440.
- M. Salman, R. Rehman, U. Farooq, A. Tahir, L. Mitu, Biosorptive
removal of cadmium(II) and copper(II) using microwave-assisted
thiourea-modified Sorghum bicolor agrowaste, J. Chem.,
2020 (2020) 8269643, doi: 10.1155/2020/8269643.
- T. Kalak, J. Dudczak-Hałabuda, Y. Tachibana, R. Cierpiszewski,
Effective use of elderberry (Sambucus nigra) pomace in
biosorption processes of Fe(III) ions, Chemosphere, 246 (2020)
125744, doi: 10.1016/j.chemosphere.2019.125744.
- L. Dong, Z. Diao, J. Du, Z. Jiang, Q. Meng, Y. Zhang,
Mechanism of Cu(II) Biosorption by Saccharomyces cerevisiae,
3rd International Conference on Bioinformatics and Biomedical
Engineering, IEEE, Beijing, China, 2009, pp. 1–4.
- C. Tu, Y. Liu, J. Wei, L. Li, K.G. Scheckel, Y. Luo, Characterization
and mechanism of copper biosorption by a highly copperresistant
fungal strain isolated from copper-polluted acidic
orchard soil, Environ. Sci. Pollut. Res. Int., 25 (2018) 24965–24974.
- J.B. Dulla, M.R. Tamana, S. Boddu, K. Pulipati, K. Srirama,
Biosorption of copper(II) onto spent biomass of Gelidiella
acerosa (brown marine algae): optimization and kinetic studies,
Appl. Water Sci., 10 (2020) 56, doi:10.1007/s13201-019-1125-3.
- M. Isam, L. Baloo, S.R.M. Kutty, S. Yavari, Optimisation and
modelling of Pb(II) and Cu(II) biosorption onto red algae
(Gracilaria changii) by using response surface methodology,
Water, 11 (2019) 2325, doi:10.3390/w11112325.
- X.H. Wang, R.H. Song, S.X. Teng, M.M. Gao, J.Y. Ni, F.F. Liu,
S.G. Wang, B.Y. Gao, Characteristics and mechanisms of Cu(II)
biosorption by disintegrated aerobic granules, J. Hazard.
Mater., 179 (2010) 431–437.
- J.M. do Nascimento, J.D. de Oliveira, A.C.L. Rizzo,
S.G.F. Leite, Biosorption Cu(II) by the yeast Saccharomyces
cerevisiae, Biotechnol. Rep., 21 (2019) e00315, doi: 10.1016/
j.btre.2019.e00315.
- O.A. Mohamad, X. Hao, P. Xie, S. Hatab, Y. Lin, G. Wei,
Biosorption of copper(II) from aqueous solution using nonliving
Mesorhizobium amorphae strain CCNWGS0123, Microbes
Environ., 3 (2012) 234–241.
- Z. Velkova, M. Stoytcheva, V. Gochev, Biosorption of Cu(II) onto
chemically modified waste mycelium of Aspergillus awamori:
equilibrium, kinetics and modeling studies, J. Biosci. Biotech.,
1 (2012) 163–169.
- A. Dąbrowski, Adsorption – from theory to practice,
Adv. Colloid Interface Sci., 93 (2001) 135–224.
- Y.S. Ho, J.C.Y. Ng, G. McKay, Kinetics of pollutant sorption by
biosorbents: review, Sep. Purif. Rev., 29 (2000) 189–232.
- W.S.W. Ngah, M.A.K.M. Hanafiah, Surface modification of
rubber (Hevea brasiliensis) leaves for the adsorption of copper
ions: kinetic, thermodynamic and binding mechanisms,
J. Chem. Technol. Biotechnol., 84 (2009) 192–201.
- P. Salehi, B. Asghari, F. Mohammadi, Removal of heavy metals
from aqueous solutions by Cercis siliquastrum L., J. Iran. Chem.
Soc., 5 (2008) 80–86.
- A.S.A. Aziz, L.A. Manaf, H.C. Man, N.S. Kumar, Kinetic
modeling and isotherm studies for copper(II) adsorption
onto palm oil boiler mill fly ash (POFA) as a natural low-cost
adsorbent, BioResources, 9 (2013) 336–356.
- H.I. Owamah, Biosorptive removal of Pb(II) and Cu(II) from
wastewater using activated carbon from cassava peels, J. Mater.
Cycles Waste Manage., 16 (2014) 347–358.
- E. Pehlivan, T. Altun, Ş. Parlayici, Modified barley straw as a
potential biosorbent for removal of copper ions from aqueous
solution, Food Chem., 135 (2012) 2229–2234.
- T. Longlong, L. Dan, H. Lingxin, C. Shiwei, Q. Wei, L. Jing,
W. Qiang, L. Zhan, W. Wang-suo, One-pot hydrothermal
synthesis of carbonaceous nanocomposites for efficient
decontamination of copper, RSC Adv., 5 (2015) 98041–98049.
- A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat,
M.S. Uddin, Carboxymethyl-β-cyclodextrin conjugated
magnetic nanoparticles as nano-adsorbents for removal of
copper ions: synthesis and adsorption studies, J. Hazard.
Mater., 185 (2011) 1177–1186.
- X. Ren, J. Li, X. Tan, X. Wang, Comparative study of graphene
oxide, activated carbon and carbon nanotubes as adsorbents
for copper decontamination, Dalton Trans., 42 (2013) 5266–5274.
- G. Huang, W. Wang, X. Mi, W. Xie, Y. Liu, J. Gao, Preparation
of graphene oxide aerogel and its adsorption for Cu2+ ions,
Carbon, 50 (2012) 4856–4864.
- R. Demir-Cakan, N. Baccile, M. Antonietti, M.M. Titirici,
Carboxylate-rich carbonaceous materials via one-step
hydrothermal carbonization of glucose in the presence of
acrylic acid, Chem. Mater., 21 (2009) 484–490.
- C.-Y. Kuo, Water purification of removal aqueous copper (II)
by as-grown and modified multi-walled carbon nanotubes,
Desalination, 249 (2009) 781–785.
- U. Maheshwari, B. Mathesan, S. Gupta, Efficient adsorbent
for simultaneous removal of Cu(II), Zn(II) and Cr(VI): kinetic,
thermodynamics and mass transfer mechanism, Process Saf.
Environ. Prot., 98 (2015) 198–210.
- N. Fiol, I. Villaescusa, M. Martínez, N. Miralles, J. Poch,
J. Serarols, Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from
aqueous solution by olive stone waste, Sep. Purif. Technol.,
50 (2006) 132–140.
- N. Feng, X. Guo, S. Liang, Adsorption study of copper(II) by
chemically modified orange peel, J. Hazard. Mater., 164 (2009)
1286–1292.
- J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. da Cunha, N.F. Cardoso,
J.L. Brasil, S.L.P. Dias, Pecan nutshell as biosorbent to remove
Cu(II), Mn(II) and Pb(II) from aqueous solutions, J. Hazard.
Mater., 162 (2009) 270–280.
- P. Tasaso, Adsorption of copper using pomelo peel and
depectinated pomelo peel, J. Clean Energy Technol.,
2 (2014)
154–157.
- T. Aman, A.A. Kazi, M.U. Sabri, Q. Bano, Potato peels as solid
waste for the removal of heavy metal copper(II) from waste
water/industrial effluent, Colloids Surf., B, 63 (2008) 116–121.
- M. Kaur, P. Sharma, S. Kumari, Equilibrium studies for
copper removal from aqueous solution using nanoadsorbent
synthesized from rice husk, SN Appl. Sci., 1 (2019) 988, doi:
10.1007/s42452-019-1024-0.
- H. Aydın, Y. Bulut, Ç. Yerlikaya, Removal of copper(II) from
aqueous solution by adsorption onto low-cost adsorbents,
J. Environ. Manage., 87 (2008) 37–45.
- A. Witek-Krowiak, Analysis of temperature-dependent
biosorption of Cu2+ ions on sunflower hulls: kinetics,
equilibrium and mechanism of the process, Chem. Eng. J.,
192 (2012) 13–20.
- C.C. Ferrari, C.P. Ribeiro, A.M. Liserre, I. Moreno,
S.P.M. Germer, J.M. de Aguirre, Spray Drying of Blackberry
Juice using Maltodextrin or Gum Arabic as Carrier Agents,
6th International CIGR Technical Symposium – Towards a
Sustainable Food Chain: Food Process, Bioprocessing and
Food Quality Management, Nantes, France, April 18–20, 2011.
- K.Y. Lou, A.U. Rajapaksha, Y.S. Ok, S.X. Chang, Sorption of
copper(II) from synthetic oil sands process-affected water
(OSPW) by pine sawdust biochars: effects of pyrolysis
temperature and steam activation, J. Soils Sediments, 16 (2016)
2081–2089.
- S. Zhao, N. Ta, X. Wang, Absorption of Cu(II) and Zn(II) from
aqueous solutions onto biochars derived from apple tree
branches, Energies, 13 (2020) 3498, doi: 10.3390/en13133498.
- A.H. Sulaymon, A.A. Mohammed, T.J. Al-Musawi, Removal
of lead, cadmium, copper, and arsenic ions using biosorption:
equilibrium and kinetic studies, Desal. Water Treat., 51 (2013)
4424–4434.
- J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune,
D.C. Seo, Competitive adsorption of heavy metals onto sesame
straw biochar in aqueous solutions, Chemosphere, 142 (2016)
77–83.
- A.G. Caporale, M. Pigna, A. Sommella, P. Conte, Effect of
pruning-derived biochar on heavy metals removal and water
dynamics, Biol. Fertil. Soils, 50 (2014) 1211–1222.
- A. Bogusz, P. Oleszczuk, R. Dobrowolski, Application of
laboratory prepared and commercially available biochars
to adsorption of cadmium, copper and zinc ions from water,
Bioresour. Technol., 196 (2015) 540–549.