References
- E. Ardern, W.T. Lockett, Experiments on the oxidation of
sewage without the aid of filters, J. Chem. Technol. Biotechnol.,
33 (1914) 523–539.
- S. Kavitha, J.R. Banu, J.V. Kumar, M. Rajkumar, Improving the
biogas production performance of municipal waste activated
sludge via disperser induced microwave disintegration,
Bioresour. Technol., 217 (2016) 21–27.
- S. Pullket, Sewage Sludge as Source of Activated Carbon for the
Removal of Endocrine Disrupting Chemicals in Wastewater,
Thesis, Imperial College London, South Kensington, London, 2015.
- J. Choudhary, B. Kumar, A. Gupta, Feasible utilization of
waste limestone sludge as filler in bituminous concrete,
Constr. Build. Mater., 239 (2020) 117781, doi: 10.1016/j.conbuildmat.2019.117781.
- H. Hudcová, J. Vymazal, M. Rozkošný, Present restrictions of
sewage sludge application in agriculture within the European
Union, Soil Water Res., 14 (2019) 104–120.
- S. Maamri, M. Amrani, Biogas production from waste activated
sludge using cattle dung inoculums: effect of total solid
contents and kinetics study, Energy Procedia, 50 (2014) 352–359.
- A.P. Eswari, S. Kavitha, J.R. Banu, O.P. Karthikeyan, I.T. Yeom,
H2O2 induced cost effective microwave disintegration of dairy
waste activated sludge in acidic environment for efficient
biomethane generation, Bioresour. Technol., 244 (2017)
688–697.
- C. Sun, R. Liu, W. Cao, K. Li, L. Wu, Optimization of sodium
hydroxide pretreatment conditions to improve biogas
production from asparagus stover, Waste Biomass Valorization,
10 (2019) 121–129.
- H. Junoh, C.H. Yip, P. Kumaran, Effect on Ca(OH)2 Pretreatment
to Enhance Biogas Production of Organic Food Waste, IOP
Conference Series: Earth and Environmental Science, Volume
32, International Conference on Advances in Renewable
Energy and Technologies (ICARET 2016) 23–25 February 2016,
Putrajaya, Malaysia, 32 (2016) 012013.
- X. Liu, X. Huang, Y. Wu, Q. Xu, M. Du, D. Wang, Q. Yang,
Y. Liu, B.-J. Ni, G. Yang, F. Yang, Q. Wang, Activation of nitrite
by freezing process for anaerobic digestion enhancement of
waste activated sludge: performance and mechanisms, Chem.
Eng. J., 387 (2020) 124147, doi: 10.1016/j.cej.2020.124147.
- J. Oladejo, K. Shi, X. Luo, G. Yang, T. Wu, A review of sludge-toenergy
recovery methods, Energies, 12 (2019) 60, doi: 10.3390/en12010060.
- S. Pilli, S. Yan, R.D. Tyagi, R.Y. Surampalli, Overview of Fenton
pre-treatment of sludge aiming to enhance anaerobic digestion,
Rev. Environ. Sci. Biotechnol., 14 (2015) 453–472.
- K. Michalska, K. Miazek, L. Krzystek, S.Ledakowicz, Influence
of pretreatment with Fenton’s reagent on biogas production
and methane yield from lignocellulosic biomass, Bioresour.
Technol., 119 (2012) 72–78.
- Z. Hanjie, Sludge treatment to increase biogas production,Skolan
för arkitektur och samhällsbyggnad, Kungliga Tekniska
högskolan, 2010.
- D.P. Rufus, R. Banu, D.D. Nguyen, G. Kumar, S.W. Chang,
Effect of dispersion treatment on dairy waste activated sludge
to hasten the production of biogas, Front. Energy Res., 7 (2019)
136, doi: 10.3389/fenrg.2019.00136.
- D.A. Jones, T.P. Lelyveld, S.D. Mavrofidis, S.W. Kingman,
N.J. Miles, Microwave heating applications in environmental
engineering—a review, Resour. Conserv. Recycl., 34 (2002)
75–90.
- V.K. Tyagi, S.L. Lo, Microwave irradiation: a sustainable way for
sludge treatment and resource recovery, Renewable Sustainable
Energy Rev., 18 (2013) 288–305.
- J.H. Jang, J.H. Ahn, Effect of microwave pretreatment in presence
of NaOH on mesophilic anaerobic digestion of thickened
waste activated sludge, Bioresour. Technol., 131 (2013) 437–442.
- J.R. Banu, R.Y. Kannah, S. Kavitha, M. Gunasekaran, G. Kumar,
Novel insights into scalability of biosurfactant combined
microwave disintegration of sludge at alkali pH for achieving
profitable bioenergy recovery and net profit, Bioresour.
Technol., 267 (2018) 281–290.
- A. Zaker, Z. Chen, X. Wang, Q. Zhang, Microwave-assisted
pyrolysis of sewage sludge: a review, Fuel Process. Technol.,
187 (2019) 84–104.
- M.H. Zhang, H. Dong, L. Zhao, D.X. Wang, D. Meng, A review
on Fenton process for organic wastewater treatment based
on optimization perspective, Sci. Total Environ., 670 (2019)
110–121.
- J.R. Banu, R.Y. Kannah, S. Kavitha, M.Gunasekaran, I.T. Yeom,
G. Kumar, Disperser-induced bacterial disintegration of
partially digested anaerobic sludge for efficient biomethane
recovery, Chem. Eng. J., 347 (2018) 165–172.
- X. Qi, Z. Li, Efficiency optimization of a microwave-assisted
Fenton-like process for the pretreatment of chemical synthetic
pharmaceutical wastewater, Desal. Water Treat., 57 (2016)
11756–11764.
- N. Barrak, R. Mannai, M. Zaidi, M. Kechida, A.N. Helal,
Experimental design approach with response surface
methodology for removal of indigo dye by electrocoagulation,
J. Geosci. Environ. Prot., 4 (2016) 50–61.
- T. Yu, Y. Deng, H. Liu, C. Yang, B. Wu, G. Zeng, F. Nishimura,
Effect of alkaline microwaving pretreatment on anaerobic
digestion, biogas production of swine manure, Sci. Rep.,
7 (2017) 1–8.
- G.E. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters:
deSign, Innovation, and Discovery, Vol. 2, Wiley-Interscience,
New York, 2005.
- J.M. Morgan, C.F. Forster, L. Evison, A comparative study of the
nature of biopolymers extracted from anaerobic and activated
sludges, Water Res., 24 (1990) 743–750.
- C.H. Pham, J.M. Triolo, T.T.T. Cu, L. Pedersen, S.G. Sommer,
Validation and recommendation of methods to measure biogas
production potential of animal manure, Asian-Australas.
J. Anim. Sci., 26 (2013) 864, doi: doi: 10.5713/ajas.2012.12623.
- M.S. Lucas, J.A. Peres, Removal of COD from olive mill
wastewater by Fenton’s reagent: kinetic study, J. Hazard. Mater.,
168 (2009) 1253–1259.
- D.H. Kim, E. Jeong, S.E. Oh, H.S. Shin, Combined
(alkaline + ultrasonic) pretreatment effect on sewage sludge
disintegration, Water Res., 44 (2010) 3093–3100.
- K. Izumi, Y.K. Okishio, N. Nagao, C. Niwa, S. Yamamoto,
T. Toda, Effects of particle size on anaerobic digestion of
food waste, Int. Biodeterior. Biodegrad., 64 (2010) 601–608.
- S. Şahinkaya, E. Kalıpcı, S. Aras, Disintegration of waste
activated sludge by different applications of Fenton process,
Process Saf. Environ. Prot., 93 (2015) 274–281.
- C. Eskicioglu, K.L. Kennedy, R.L. Droste, Enhancement of batch
waste activated sludge digestion by microwave pretreatment,
Water Environ Res., 79 (2007) 2304–2317.
- L. Peng, L. Appels, H. Su, Combining microwave irradiation
with sodium citrate addition improves the pre-treatment
on anaerobic digestion of excess sewage sludge, J. Environ.
Manage., 213 (2018) 271–278.
- I. Doğan, F.D. Sanin, Alkaline solubilization and microwave
irradiation as a combined sludge disintegration and
minimization method, Water Res., 43 (2009) 2139–2148.
- I. Lee, J.I. Han, The effects of waste-activated sludge
pretreatment using hydrodynamic cavitation for methane
production, Ultrason. Sonochem., 20 (2013) 1450–1455.
- Q. Yang, J. Yi, K. Luo, X. Jing, X. Li, Y. Liu, G. Zeng, Improving
disintegration and acidification of waste activated sludge by
combined alkaline and microwave pretreatment, Process Saf.
Environ. Prot., 91 (2013) 521–526.
- Y.C Bozkurt, O.G. Apul, Critical review for microwave
pretreatment of waste-activated sludge prior to anaerobic
digestion, Curr. Opin. Environ. Sustainability, 14 (2020) 1–9.
- C. Eskicioglu, A. Prorot, J. Marin, R.L. Droste, K. J Kennedy,
Synergetic pretreatment of sewage sludge by microwave
irradiation in presence of H2O2 for enhanced anaerobic
digestion, Water Res., 42 (2008) 4674–4682.
- S. Şahinkaya, M.F. Sevimli, Sono-thermal pre-treatment of
waste activated sludge before anaerobic digestion, Ultrason.
Sonochem., 20 (2013) 587–594.
- A. Gonzalez, H. Guo, O. Ortega-Ibáñez, C. Petri, J.B. van Lier,
M. de Kreuk, A. Hendriks, Mild thermal pre-treatment of waste
activated sludge to increase loading capacity, biogas production,
and solids’ degradation: a pilot-scale study, Energies, 13 (2020)
6059, doi: 10.3390/en13226059.
- B. Yu, J. Xu, H. Yuan, Z. Lou, J. Lin, N. Zhu, Enhancement of
anaerobic digestion of waste activated sludge by electrochemical
pretreatment, Fuel, 130 (2014) 279–285.