References

  1. P.H.M. Feron, A.E. Jansen, Capture of carbon dioxide using membrane gas absorption and reuse in the horticultural industry, Energy Convers. Manage., 36 (1995) 411–414.
  2. R. Klaassen, P. Feron, A. Jansen, Membrane contactor applications, Desalination, 224 (2008) 81–87.
  3. A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci., 159 (1999) 61–106.
  4. M. Slovinsky, W. Woodridge, Boiler Additives for Oxygen Scavenging, US Patent, US4269717A, 1981, pp. 1–3.
  5. I.B. Butler, M.A.A. Schoonen, D.T. Rickard, Removal of dissolved oxygen from water: a comparison of four common techniques, Talanta, 41 (1994) 211–215.
  6. O.S. Degenhardt, B. Waters, A. Rebelo-Cameirao, A. Meyer, H. Brunner, N.P. Toltl, Comparison of the Effectiveness of Various Deaeration Techniques, Dissolution Technologies, 2004, pp. 6–10, dx.doi.org/10.14227/DT110104P6.
  7. A. Alighardashi, M. Pakan, S. Jamshidi, F.P. Shariati, Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment, Membr. Water Treat., 8 (2017) 517–528.
  8. B. Miller, J. Munoz, F. Wiesler, Boiler Feed Water Degasification Using Membrane Contactors–New Methods for Optimized Performance, International Water Conference IWC-05-79, 2005. Available at: https://eswp.com/wp-content/uploads/2015/04/TOC-00s.pdf
  9. M. Stanojevic, B. Lazarevic, D. Radic, Review of membrane contactors designs and applications of different modules in industry, FME Trans., 31 (2003) 91–98.
  10. A. Rawat, G.K. Agrahari, N. Pandey, P.K. Bhattacharya, Mathematical analysis of removal of dissolved acidic gases from aqueous stream using membrane contactor, Int. J. Chem. Eng. Appl., 4 (2013) 90–294.
  11. T. Uragami, Chapter 22 – Functional Separation Membrane Research Center, Japan, Science and Technology of Separation Membranes, John Wiley & Sons Ltd, United States, pp. 667–678.
  12. T. Leiknes, M.J. Semmens, Vacuum degassing using microporous hollow fiber membranes, Sep. Purif. Technol., 22 (2001) 278–294.
  13. T. Tomasa, Development of Membrane Materials for Gas-liquid Membrane Contactors for CO2 Capture from Natural Gas, Ph.D. Dissertation, Norwegian University of Science and Technology, 2013, pp. 1–70. Available at: https://pdfs.semanticscholar.org/b9fe/172bd69ba7cd19503d8f5637ec8fe4691c5d.pdf
  14. G. Bakeri, A.F. Ismail, D.R.R. Arzhandi, T. Matsuura, Porous PES and PEI hollow fiber membranes in a gas–liquid contacting process—a comparative study, J. Membr. Sci., 475 (2015) 57–64.
  15. T. Li, P. Yu, Y. Luo, Preparation and properties of hydrophobic poly(vinylidene fluoride) SiO2 mixed matrix membranes for dissolved oxygen removal from water, J. Appl. Polym. Sci., 131 (2014), doi:10.1002/app.40430.
  16. Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: a review, Int. J. Greenhouse Gas Control, 12 (2013) 84–107.
  17. L. Li, C. Song, D. Jiang, T. Wang, Preparation and enhanced gas separation performance of carbon/carbon nanotubes (C/CNTS) hybrid membranes, Sep. Purif. Technol., 188 (2017) 73–80.
  18. Z. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review, Green Energy Environ., 1 (2016) 102–128.
  19. Y. Alqaheem, A. Alomair, M. Vinoba, A. Pérez, Polymeric gasseparation membranes for petroleum refining, Int. J. Polym. Sci., 2017 (2017) 4250927, doi: 10.1155/2017/4250927.
  20. Membrana-Charlotte, Liqui-Cel® Membrane Contactor Technology Being Evaluated for Dissolved Gas Removal from Water in Many Hydrocarbon Processes, Liqui-Cel® Membrane Contactors, United States, 2012. Available at: https://mail. google.com/mail/u/0/?tab=wm#inbox
  21. C.-D. Ho, Y.-J. Sung, W.-T. Chen, F.-C. Tsai, Performance improvement of countercurrent-flow membrane gas absorption in a hollow fiber gas-liquid membrane contactor, Membr. Water Treat., 8 (2017) 35–50.
  22. 3M Science Applied to LifeTM, Chemical Cost Comparison of a Conventional Deaerator vs. a 3M™ Liqui-Cel™ Membrane Contactor System, 2021. Available at: https://multimedia.3m.com/mws/media/1412615O/conventional-deaerator-vs-3mliqui- cel-membrane-contactor-syst.pdf
  23. R. Tesser, A. Bottino, G. Capannelli, F. Montagnaro, S. Vitolo, M. Di Serio, E. Santacesaria, Advantages in the use of membrane contactors for the study of gas–liquid and gas–liquid–solid reactions, Ind. Eng. Chem. Res., 44 (2005) 9451–9460.
  24. H.U. Sverdrup, M.W. Johnson, R.H. Fleming, The Oceans Their Physics, Chemistry, and General Biology, Prentice-Hall, New York, 1942. Available at: http://ark.cdlib.org/ark:/13030/kt167nb66r/
  25. R. Chester, Department of Earth Sciences University of Liverpool, UK, Springer, Dordrecht Netherlands, pp. 233–271.
  26. R.H. Petrucci, W.H. Harwood, G.E. Herring, J. Madura, General Chemistry: Principles and Modern Applications, 9th ed., Pearson, Upper Saddle River, NJ, 2007. ISBN-13: 978–0131493308. ISBN-10: 0131493302.
  27. S.Z. Steven, Chemistry, 5th ed., Houghton Mifflin Company, Boston, MA, 2000. ISBN-13: 978–0393615142. ISBN-10: 9780393615142.
  28. P. Shapley, Dissolved Oxygen and Carbon Dioxide, University of Illinois, United States, 2011. Available at: http://butane.chem. uiuc.edu/pshapley/GenChem1/L23/web-L23.pdf
  29. M.S. Subramanian, Analysis of Major Constituents in Water, Environmental Chemistry and Analysis, Silo.Tips, United States, pp. 1–18. Available at: https://nptel.ac.in/courses/IITMADRAS/Enivironmental_Chemistry_Analysis/Pdfs/2_1.pdf
  30. R. Battino, A.H.L. Clever, The solubility of gases in liquids, Chem. Rev., 66 (1966) 395–463.
  31. D.E. Carritt, J.W. Kanwisher, Electrode system for measuring dissolved oxygen, Anal. Chem., 31 (1959) 5–9.
  32. D. Mišlov, M. Cifrek, I. Krois, H. Džapo, Measurement of Dissolved Hydrogen Concentration With Clark Electrode, 2015 IEEE Sensors Applications Symposium (SAS), IEEE, Zadar, Croatia, 2015. Available at: https://ieeexplore.ieee.org/document/7133656
  33. B. Frankli, Finesse Solutions, LLC, San Jose CA, pp. 17–32.
  34. C.N. Jones, Gas chromatographic determination of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, ammonia, water, and C1 through C5 saturated hydrocarbons in refinery gases, Anal. Chem., 39 (1967) 1858–1860.
  35. T. Hansen, B. Gardeler, B. Matthiessen, Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system, Biogeosciences, 10 (2013) 6601–6608.
  36. J.E. Miller, Sandia National Laboratories California, Sandia Corporation, United States, pp. 1–54.
  37. M. Schorr, B. Valdez, J. Ocampo, A. Eliezer, Corrosion Control in the Desalination Industry, Desalination, Trends and Technologies, Springer Cham, Switzerland, 2011, pp. 72–86.
  38. B. Valdez, M. Schorr, Corrosion control in the desalination industry, Adv. Mater. Res., 95 (2010) 29–32.
  39. G. Luyckx, J. Ceulemans, Deoxygenation, deaeration and degassing: a survey and evaluation of methods, Bull. Soc. Chim. Belg., 96 (1987) 151–163.
  40. Color & Comfort, DIC Corporation, Japan, 19.07.2021. Available at: https://www.separel.com/en/technology/
  41. I. Zekos, M.M. Stack, A note on a design protocol for deoxygenation of water, Electrochem. Commun., 103 (2019) 12–16.
  42. DuPont Water Solutions, DuPont™ Ligasep™ Degasification Modules Technical Manual, 2020. Available at: https://www. dupont.com/content/dam/dupont/amer/us/en/water-solutions/ public/documents/en/45-D00506-en.pdf
  43. D.G. Bessarabov, E.P. Jacobs, R.D. Sanderson, I.N. Beckman, Use of nonporous polymeric flat-sheet gas-separation membranes in a membrane-liquid contactor: experimental studies, J. Membr. Sci., 113 (1996) 275–284.
  44. J. Shao, H. Liu, Y. He, Boiler feed water deoxygenation using hollow fiber membrane contactor, Desalination, 234 (2008) 370–377.
  45. T. Li, P. Yu, Y. Luo, Deoxygenation performance of polydimethylsiloxane mixed-matrix membranes for dissolved oxygen removal from water, J. Appl. Polym. Sci., 132 (2015) 41350 (1–9).
  46. I. Martić, A. Maslarević, S. Mladenović, U. Lukić, S. Budimir, Water deoxygenation using hollow fiber membrane module with nitrogen as inert gas, Desal. Water Treat., 54 (2015) 1563–1567.
  47. L. Mao, F. Wang, J. Su, Development of robust tri-bore hollow fiber membranes for the control of dissolved oxygen in water, J. Mater. Chem. Eng., 1 (2018) 1–9.
  48. 3M Separation and Purification Sciences Division, Chemical Cost Comparison of a Conventional Deaerator vs. a 3M™ Liqui-Cel™ Membrane Contactor System, 3M Company, United States, 2017. Available at: https://multimedia.3m.com/mws/media/1412615O/conventional-deaerator-vs-3m-liqui-celmembrane- contactor-syst.pdf
  49. L. Li, G. Ma, Z. Pan, N. Zhang, Z. Zhang, Research progress in gas separation using hollow fiber membrane contactors, Membranes, 10 (2020) 380, 1–20, doi: 10.3390/ membranes10120380.
  50. Y. Yin, N. Jeong, R. Minjarez, C.A. Robbins, K.H. Carlson, T. Tong, Contrasting behaviors between gypsum and silica scaling in the presence of antiscalants during membrane distillation, Environ. Sci. Technol., 55 (2021) 5335–5346.
  51. M. Prisciandaro, V. Innocenzi, F. Tortora, G.M. di Celso, Reduction of fouling and scaling by calcium ions on an UF membrane surface for an enhanced water pre-treatment, Water, 11 (2019) 984, 2–11, doi:10.3390/w11050984.
  52. T. Horseman, Y. Yin, K.S.S. Christie, Z. Wang, T. Tong, S. Lin, Wetting, scaling, and fouling in membrane distillation: stateof- the-art insights on fundamental mechanisms and mitigation strategies, ACS EST Eng., 1 (2021) 117−140.
  53. B. Garudachari, A. Al-Odwani, R.K. Alambi, M. Al-Tabtabaei, Y. Al-Foudari, Development of carbon nanotube membranes for dissolved gases removal as seawater pretreatment, Desal. Water Treat., 208 (2020) 104–109.
  54. Q. Xin, X. Li, H. Hou, Q. Liang, J. Guo, S. Wang, L. Zhang, L. Lin, H. Ye, Y. Zhang, Superhydrophobic
    surface-constructed membrane contactor with hierarchical lotus-leaf-like interfaces for efficient SO2 capture, ACS Appl. Mater. Interfaces, 13 (2021) 1827–1837.
  55. H. Kreulen, C.A. Smolders, G.F. Versteeg, V.W.P. van Swaaij, Determination of mass transfer rates in wetted and non-wetted microporous membranes, Chem. Eng. Sci., 48 (1993) 2093−2102.
  56. J.G. Lu, Y.F. Zheng, M.D. Cheng, Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption, J. Membr. Sci., 308 (2008) 180−190.