References
- P.H.M. Feron, A.E. Jansen, Capture of carbon dioxide using
membrane gas absorption and reuse in the horticultural
industry, Energy Convers. Manage., 36 (1995) 411–414.
- R. Klaassen, P. Feron, A. Jansen, Membrane contactor
applications, Desalination, 224 (2008) 81–87.
- A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors,
J. Membr. Sci., 159 (1999) 61–106.
- M. Slovinsky, W. Woodridge, Boiler Additives for Oxygen
Scavenging, US Patent, US4269717A, 1981, pp. 1–3.
- I.B. Butler, M.A.A. Schoonen, D.T. Rickard, Removal of
dissolved oxygen from water: a comparison of four common
techniques, Talanta, 41 (1994) 211–215.
- O.S. Degenhardt, B. Waters, A. Rebelo-Cameirao, A. Meyer,
H. Brunner, N.P. Toltl, Comparison of the Effectiveness of
Various Deaeration Techniques, Dissolution Technologies, 2004,
pp. 6–10, dx.doi.org/10.14227/DT110104P6.
- A. Alighardashi, M. Pakan, S. Jamshidi, F.P. Shariati, Performance
evaluation of membrane bioreactor (MBR) coupled with
activated carbon on tannery wastewater treatment, Membr.
Water Treat., 8 (2017) 517–528.
- B. Miller, J. Munoz, F. Wiesler, Boiler Feed Water Degasification
Using Membrane Contactors–New Methods for Optimized
Performance, International Water Conference IWC-05-79, 2005.
Available at: https://eswp.com/wp-content/uploads/2015/04/TOC-00s.pdf
- M. Stanojevic, B. Lazarevic, D. Radic, Review of membrane
contactors designs and applications of different modules in
industry, FME Trans., 31 (2003) 91–98.
- A. Rawat, G.K. Agrahari, N. Pandey, P.K. Bhattacharya,
Mathematical analysis of removal of dissolved acidic gases
from aqueous stream using membrane contactor, Int. J. Chem.
Eng. Appl., 4 (2013) 90–294.
- T. Uragami, Chapter 22 – Functional Separation Membrane
Research Center, Japan, Science and Technology of Separation
Membranes, John Wiley & Sons Ltd, United States, pp. 667–678.
- T. Leiknes, M.J. Semmens, Vacuum degassing using
microporous hollow fiber membranes, Sep. Purif. Technol.,
22 (2001) 278–294.
- T. Tomasa, Development of Membrane Materials for Gas-liquid
Membrane Contactors for CO2 Capture from Natural Gas, Ph.D.
Dissertation, Norwegian University of Science and Technology,
2013, pp. 1–70. Available at: https://pdfs.semanticscholar.org/b9fe/172bd69ba7cd19503d8f5637ec8fe4691c5d.pdf
- G. Bakeri, A.F. Ismail, D.R.R. Arzhandi, T. Matsuura, Porous
PES and PEI hollow fiber membranes in a gas–liquid contacting
process—a comparative study, J. Membr. Sci., 475 (2015) 57–64.
- T. Li, P. Yu, Y. Luo, Preparation and properties of hydrophobic
poly(vinylidene fluoride) SiO2 mixed matrix membranes for
dissolved oxygen removal from water, J. Appl. Polym. Sci.,
131 (2014), doi:10.1002/app.40430.
- Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and
development of membranes for CO2/CH4 separation: a review,
Int. J. Greenhouse Gas Control, 12 (2013) 84–107.
- L. Li, C. Song, D. Jiang, T. Wang, Preparation and enhanced gas
separation performance of carbon/carbon nanotubes (C/CNTS)
hybrid membranes, Sep. Purif. Technol., 188 (2017) 73–80.
- Z. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer
composite polymeric membranes for CO2 separation: a review,
Green Energy Environ., 1 (2016) 102–128.
- Y. Alqaheem, A. Alomair, M. Vinoba, A. Pérez, Polymeric gasseparation
membranes for petroleum refining, Int. J. Polym.
Sci., 2017 (2017) 4250927, doi: 10.1155/2017/4250927.
- Membrana-Charlotte, Liqui-Cel® Membrane Contactor
Technology Being Evaluated for Dissolved Gas Removal from
Water in Many Hydrocarbon Processes, Liqui-Cel® Membrane
Contactors, United States, 2012. Available at: https://mail.
google.com/mail/u/0/?tab=wm#inbox
- C.-D. Ho, Y.-J. Sung, W.-T. Chen, F.-C. Tsai, Performance
improvement of countercurrent-flow membrane gas absorption
in a hollow fiber gas-liquid membrane contactor, Membr. Water
Treat., 8 (2017) 35–50.
- 3M Science Applied to LifeTM, Chemical Cost Comparison of
a Conventional Deaerator vs. a 3M™ Liqui-Cel™ Membrane
Contactor System, 2021. Available at: https://multimedia.3m.com/mws/media/1412615O/conventional-deaerator-vs-3mliqui-
cel-membrane-contactor-syst.pdf
- R. Tesser, A. Bottino, G. Capannelli, F. Montagnaro, S. Vitolo,
M. Di Serio, E. Santacesaria, Advantages in the use of membrane
contactors for the study of gas–liquid and gas–liquid–solid
reactions, Ind. Eng. Chem. Res., 44 (2005) 9451–9460.
- H.U. Sverdrup, M.W. Johnson, R.H. Fleming, The Oceans
Their Physics, Chemistry, and General Biology, Prentice-Hall,
New York, 1942. Available at: http://ark.cdlib.org/ark:/13030/kt167nb66r/
- R. Chester, Department of Earth Sciences University of
Liverpool, UK, Springer, Dordrecht Netherlands, pp. 233–271.
- R.H. Petrucci, W.H. Harwood, G.E. Herring, J. Madura,
General Chemistry: Principles and Modern Applications,
9th ed., Pearson, Upper Saddle River, NJ, 2007. ISBN-13:
978–0131493308. ISBN-10: 0131493302.
- S.Z. Steven, Chemistry, 5th ed., Houghton Mifflin Company,
Boston, MA, 2000. ISBN-13: 978–0393615142. ISBN-10:
9780393615142.
- P. Shapley, Dissolved Oxygen and Carbon Dioxide, University
of Illinois, United States, 2011. Available at: http://butane.chem.
uiuc.edu/pshapley/GenChem1/L23/web-L23.pdf
- M.S. Subramanian, Analysis of Major Constituents in Water,
Environmental Chemistry and Analysis, Silo.Tips, United
States, pp. 1–18. Available at: https://nptel.ac.in/courses/IITMADRAS/Enivironmental_Chemistry_Analysis/Pdfs/2_1.pdf
- R. Battino, A.H.L. Clever, The solubility of gases in liquids,
Chem. Rev., 66 (1966) 395–463.
- D.E. Carritt, J.W. Kanwisher, Electrode system for measuring
dissolved oxygen, Anal. Chem., 31 (1959) 5–9.
- D. Mišlov, M. Cifrek, I. Krois, H. Džapo, Measurement of
Dissolved Hydrogen Concentration With Clark Electrode,
2015 IEEE Sensors Applications Symposium (SAS), IEEE,
Zadar, Croatia, 2015. Available at: https://ieeexplore.ieee.org/document/7133656
- B. Frankli, Finesse Solutions, LLC, San Jose CA, pp. 17–32.
- C.N. Jones, Gas chromatographic determination of hydrogen,
oxygen, nitrogen, carbon monoxide, carbon dioxide, hydrogen
sulfide, ammonia, water, and C1 through C5 saturated
hydrocarbons in refinery gases, Anal. Chem., 39 (1967) 1858–1860.
- T. Hansen, B. Gardeler, B. Matthiessen, Technical Note: Precise
quantitative measurements of total dissolved inorganic carbon
from small amounts of seawater using a gas chromatographic
system, Biogeosciences, 10 (2013) 6601–6608.
- J.E. Miller, Sandia National Laboratories California, Sandia
Corporation, United States, pp. 1–54.
- M. Schorr, B. Valdez, J. Ocampo, A. Eliezer, Corrosion Control
in the Desalination Industry, Desalination, Trends and
Technologies, Springer Cham, Switzerland, 2011, pp. 72–86.
- B. Valdez, M. Schorr, Corrosion control in the desalination
industry, Adv. Mater. Res., 95 (2010) 29–32.
- G. Luyckx, J. Ceulemans, Deoxygenation, deaeration and
degassing: a survey and evaluation of methods, Bull. Soc. Chim.
Belg., 96 (1987) 151–163.
- Color & Comfort, DIC Corporation, Japan, 19.07.2021. Available
at: https://www.separel.com/en/technology/
- I. Zekos, M.M. Stack, A note on a design protocol for
deoxygenation of water, Electrochem. Commun., 103 (2019)
12–16.
- DuPont Water Solutions, DuPont™ Ligasep™ Degasification
Modules Technical Manual, 2020. Available at: https://www.
dupont.com/content/dam/dupont/amer/us/en/water-solutions/
public/documents/en/45-D00506-en.pdf
- D.G. Bessarabov, E.P. Jacobs, R.D. Sanderson, I.N. Beckman, Use
of nonporous polymeric flat-sheet gas-separation membranes in
a membrane-liquid contactor: experimental studies, J. Membr.
Sci., 113 (1996) 275–284.
- J. Shao, H. Liu, Y. He, Boiler feed water deoxygenation using
hollow fiber membrane contactor, Desalination, 234 (2008)
370–377.
- T. Li, P. Yu, Y. Luo, Deoxygenation performance of
polydimethylsiloxane mixed-matrix membranes for dissolved
oxygen removal from water, J. Appl. Polym. Sci., 132 (2015)
41350 (1–9).
- I. Martić, A. Maslarević, S. Mladenović, U. Lukić, S. Budimir,
Water deoxygenation using hollow fiber membrane module
with nitrogen as inert gas, Desal. Water Treat., 54 (2015)
1563–1567.
- L. Mao, F. Wang, J. Su, Development of robust tri-bore hollow
fiber membranes for the control of dissolved oxygen in water,
J. Mater. Chem. Eng., 1 (2018) 1–9.
- 3M Separation and Purification Sciences Division, Chemical
Cost Comparison of a Conventional Deaerator vs. a 3M™
Liqui-Cel™ Membrane Contactor System, 3M Company,
United States, 2017. Available at: https://multimedia.3m.com/mws/media/1412615O/conventional-deaerator-vs-3m-liqui-celmembrane-
contactor-syst.pdf
- L. Li, G. Ma, Z. Pan, N. Zhang, Z. Zhang, Research
progress in gas separation using hollow fiber membrane
contactors, Membranes, 10 (2020) 380, 1–20, doi: 10.3390/
membranes10120380.
- Y. Yin, N. Jeong, R. Minjarez, C.A. Robbins, K.H. Carlson,
T. Tong, Contrasting behaviors between gypsum and silica
scaling in the presence of antiscalants during membrane
distillation, Environ. Sci. Technol., 55 (2021) 5335–5346.
- M. Prisciandaro, V. Innocenzi, F. Tortora, G.M. di Celso,
Reduction of fouling and scaling by calcium ions on an UF
membrane surface for an enhanced water pre-treatment, Water,
11 (2019) 984, 2–11, doi:10.3390/w11050984.
- T. Horseman, Y. Yin, K.S.S. Christie, Z. Wang, T. Tong, S. Lin,
Wetting, scaling, and fouling in membrane distillation: stateof-
the-art insights on fundamental mechanisms and mitigation
strategies, ACS EST Eng., 1 (2021) 117−140.
- B. Garudachari, A. Al-Odwani, R.K. Alambi, M. Al-Tabtabaei,
Y. Al-Foudari, Development of carbon nanotube membranes for
dissolved gases removal as seawater pretreatment, Desal. Water
Treat., 208 (2020) 104–109.
- Q. Xin, X. Li, H. Hou, Q. Liang, J. Guo, S. Wang, L. Zhang,
L. Lin, H. Ye, Y. Zhang, Superhydrophobic
surface-constructed
membrane contactor with hierarchical lotus-leaf-like interfaces
for efficient SO2 capture, ACS Appl. Mater. Interfaces, 13 (2021)
1827–1837.
- H. Kreulen, C.A. Smolders, G.F. Versteeg, V.W.P. van Swaaij,
Determination of mass transfer rates in wetted and non-wetted
microporous membranes, Chem. Eng. Sci., 48 (1993) 2093−2102.
- J.G. Lu, Y.F. Zheng, M.D. Cheng, Wetting mechanism in mass
transfer process of hydrophobic membrane gas absorption,
J. Membr. Sci., 308 (2008) 180−190.