References

  1. M. Sepehr, S.M.R. Fatemi, A. Danehkar, A.M. Moradi, Application of Delphi method in site selection of desalination plants, Global J. Environ. Sci. Manage., 3 (2017) 89, doi: 10.22034/ gjesm.2017.03.01.009.
  2. I.J. Esfahani, J. Rashidi, P. Ifaei, C. Yoo, Efficient thermal desalination technologies with renewable energy systems: a state-of-the-art review, Korean J. Chem. Eng., 33 (2016) 351–387.
  3. A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination brine disposal methods and treatment technologies – a review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j.scitotenv.2019.07.351.
  4. R.B. Baird, Standard Methods for the Examination of Water and Wastewater, 23rd Water Environment Federation, American Public Health Association, American, 2017.
  5. F. Zarantonello, F. Mancin, R. Bonomi, Working in a team: development of a device for water hardness sensing based on an arduino–nanoparticle system, J. Chem. Educ., 97 (2020) 2025–2032.
  6. G. Ozair, J.T. Gutierrez, An overview of magnetic water treatment system and further course of study, J. Int. Environ. Appl. Sci., 5 (2010) 965–974.
  7. A. Yadollahpour, S. Rashidi, Z. Ghotbeddin, M. Jalilifar, Z. Rezaee, Electromagnetic fields for the treatments of wastewater: a review of applications and future opportunities, J. Pure Appl. Microbiol., 8 (2014) 3711–3719.
  8. C. Piyadasa, H.F. Ridgway, T.R. Yeager, M.B. Stewart, C. Pelekani, S.R. Gray, J.D. Orbell, The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes – a review, Desalination, 418 (2017) 19–34.
  9. Z. Eshaghi, M. Gholizadeh, The effect of magnetic field on the stability of (18-crown-6) complexes with potassium ion, Talanta, 64 (2004) 558–561.
  10. Y. Han, C. Zhang, L. Wu, Q. Zhang, L. Zhu, R. Zhao, Influence of alternating electromagnetic field and ultrasonic on calcium carbonate crystallization in the presence of magnesium ions, J. Cryst. Growth, 499 (2018) 67–76.
  11. E. Chibowski, A. Szcześ, Magnetic water treatment–a review of the latest approaches, Chemosphere, 203 (2018) 54–67.
  12. M.B. Miranzadeh, M. Naderi, H. Akbari, A. Mahvi, V. Past, Adsorption of arsenic from aqueous solutions by iron filings and the effect of magnetic field, Int. Arch. Health Sci., 3 (2016) 37–42.
  13. L.M.A. Monzon, J.M.D. Coey, Magnetic fields in electrochemistry: the Lorentz force. A mini-review, Electrochem. Commun., 42 (2014) 38–41.
  14. L.M. Monzon, J. Coey, Magnetic fields in electrochemistry: the Kelvin force. A mini-review, Electrochem. Commun., 42 (2014) 42–45.
  15. V. Gatard, J. Deseure, M. Chatenet, Use of magnetic fields in electrochemistry: a selected review, Curr. Opin. Electrochem., 23 (2020) 96–105.
  16. M.D. Pullins, K.M. Grant, H.S. White, Microscale confinement of paramagnetic molecules in magnetic field gradients surrounding ferromagnetic microelectrodes, J. Phys. Chem. B, 105 (2001) 8989–8994.
  17. J. Jang, S.S. Lee, Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sens. Actuators, A, 80 (2000) 84–89.
  18. A. Szcześ, E. Chibowski, L. Hołysz, P. Rafalski, Effects of static magnetic field on water at kinetic condition, Chem. Eng. Process. Process Intensif., 50 (2011) 124–127.
  19. O. Terentiev, K. Tkachuk, O. Tverda, A. Kleshchov, Electromagnetic focusing of impurities in water purification, Eastern-Eur. J. Enterp. Technol., 4 (2016) 10–15.
  20. D. Fernandez, P. Maurer, M. Martine, J. Coey, M.E. Möbius, Bubble formation at a gas-evolving microelectrode, Langmuir, 30 (2014) 13065–13074.
  21. M. Naderi, S. Nasseri, Optimization of free chlorine, electric and current efficiency in an electrochemical reactor for water disinfection purposes by RSM, J. Environ. Health Sci. Eng., 18 (2020) 1343–1350.
  22. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, 2016, pp. 236–242.
  23. M. Rouina, H.-R. Kariminia, S.A. Mousavi, E. Shahryari, Effect of electromagnetic field on membrane fouling in reverse osmosis process, Desalination, 395 (2016) 41–45.
  24. K.A. Flack, M.P. Schultz, T.A. Shapiro, Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls, Phys. Fluids, 17 (2005) 035102, doi: 10.1063/1.1843135.
  25. X.-k. Xing, C.-f. Ma, Y.-c. Chen, Z.-h. Wu, X.-r. Wang, Electromagnetic anti-fouling technology for prevention of scale, J. Central South Univ. Technol., 13 (2006) 68–74.
  26. C. Gabrielli, R. Jaouhari, G. Maurin, M. Keddam, Magnetic water treatment for scale prevention, Water Res., 35 (2001) 3249–3259.
  27. F. Alimi, M. Tlili, M.B. Amor, G. Maurin, C. Gabrielli, Effect of magnetic water treatment on calcium carbonate precipitation: influence of the pipe material, Chem. Eng. Process. Process Intensif., 48 (2009) 1327–1332.
  28. B. Stuyven, G. Vanbutsele, J. Nuyens, J. Vermant, J.A. Martens, Natural suspended particle fragmentation in magnetic scale prevention device, Chem. Eng. Sci., 64 (2009) 1904–1906.
  29. B. Mahmoud, M. Yosra, A. Nadia, Effects of magnetic treatment on scaling power of hard waters, Sep. Purif. Technol., 171 (2016) 88–92.
  30. T.N. Narasimhan, Laplace equation and Faraday’s lines of force, Water Resour. Res., 44 (2008), doi:10.1029/2007WR006221.
  31. M. Alimohammadi, M. Naderi, Effectiveness of ozone gas on airborne virus inactivation in enclosed spaces: a review study, Ozone: Sci. Eng., 43 (2021) 21–31.
  32. Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong, C. Keplinger, C. Wang, A transparent, self‐healing, highly stretchable ionic conductor, Adv. Mater., 29 (2017) 1605099, doi: 10.1002/adma.201605099.
  33. S. Gholami, M. Naderi, A.M. Moghaddam, Investigation of the survival of bacteria under the influence of supporting electrolytes KCl, CuI and NaBr in the electrochemical method, J. Res. Environ. Health, 4 (2018) 104–111.
  34. M.F. Iskander, Electromagnetic fields and Waves, Waveland Press, 2013, pp. 521–525.
  35. S. Gholami, M. Naderi, M. Yousefi, M.M. Arjmand, The electrochemical removal of bacteria from drinking water, Desal. Water Treat., 160 (2019) 110–115.
  36. M.B. Miranzadeh, M. Naderi, V. Past, The interaction effect of magnetism on arsenic and iron ions in water, Desal. Water Treat., 213 (2021) 343–347.
  37. S.I. Dikalov, Y.F. Polienko, I. Kirilyuk, Electron paramagnetic resonance measurements of reactive oxygen species by cyclic hydroxylamine spin probes, Antioxid. Redox Signaling, 28 (2018) 1433–1443.
  38. H.P.J. Wijn, Magnetic Properties of Metals: d-Elements, Alloys and Compounds, Springer Science & Business Media, 2012, pp. 100–108.
  39. R.D. Ambashta, M. Sillanpää, Water purification using magnetic assistance: a review, J. Hazard. Mater., 180 (2010) 38–49.
  40. S. Ozeki, I. Otsuka, Transient oxygen clathrate-like hydrate and water networks induced by magnetic fields,
    J. Phys. Chem. B, 110 (2006) 20067–20072.