References
- Z. Alipour, A. Azari, COD removal from industrial spent caustic
wastewater: a review, J. Environ. Chem. Eng., 8 (2020) 103678,
doi: 10.1016/j.jece.2020.103678.
- G. Veerabhadraiah, N. Mallika, S. Jindal, Spent caustic
management: remediation review: proper disposal of spent
caustic requires full understanding of waste components: plant
safety and environment, Hydrocarbon Process. (International
ed.), 90 (2011) 41–46.
- E. Ntagia, E. Fiset, L.T.C. Hong, E. Vaiopoulou, K. Rabaey,
Electrochemical treatment of industrial sulfidic spent caustic
streams for sulfide removal and caustic recovery, J. Hazard.
Mater., 388 (2020) 121770, doi:10.1016/j.jhazmat.2019.121770.
- A. Heidarinasab, S.R. Hashemi, A Study of Biological Treatment
of Spent Sulfidic Caustic, International Conference on Chemical,
Ecology and Environmental Sciences (ICCEES’2011), Pattaya,
2011, pp. 17–18.
- C. Chen, Wet air oxidation and catalytic wet air oxidation for
refinery spent caustics degradation, J. Chem. Soc. Pak., 35 (2013)
244–250.
- A. Hawari, H. Ramadan, I. Abu-Reesh, M. Ouederni,
A comparative study of the treatment of ethylene plant spent
caustic by neutralization and classical and advanced oxidation,
J. Environ. Manage., 151 (2015) 105–112.
- S. Aliasghari, P. Fatehbasharzad, A. Bazargan, S.M.A. Movahed,
Electrocoagulation for the treatment of highly sulfidic spent
caustic: parametric study followed by statistical optimization,
Int. J. Environ. Sci. Technol., 18 (2020) 939–948.
- A. Shokri, The treatment of spent caustic in the wastewater
of olefin units by ozonation followed by electrocoagulation
process, Desal. Water Treat., 111 (2018) 173–182.
- G. Hongshan, Wet air oxidation treatment of waste caustic liquor
from refinery and ethylene plant, Pet. Process. Petrochem.,
31 (2000) 39–43.
- E. Vaiopoulou, T. Provijn, A. Prévoteau, I. Pikaar, K. Rabaey,
Electrochemical sulfide removal and caustic recovery from
spent caustic streams, Water Res., 92 (2016) 38–43.
- I.B. Hariz, A. Halleb, N. Adhoum, L. Monser, Treatment
of petroleum refinery sulfidic spent caustic wastes by
electrocoagulation, Sep. Purif. Technol., 107 (2013) 150–157.
- M.H. El-Naas, S. Al-Zuhair, A. Al-Lobaney, S. Makhlouf,
Assessment of electrocoagulation for the treatment of petroleum
refinery wastewater, J. Environ. Manage., 91 (2009) 180–185.
- C. Escobar, C. Soto-Salazar, M.I. Toral, Optimization of the
electrocoagulation process for the removal of copper, lead
and cadmium in natural waters and simulated wastewater,
J. Environ. Manage., 81 (2006) 384–391.
- M. Malakootian, N. Yousefi, The efficiency of electrocoagulation
process using aluminum electrodes in removal of hardness
from water, Int. J. Environ. Health Sci. Eng., 6 (2009) 131–136.
- M.Y.A. Mollah, R. Schennach, J.R. Parga, D.L. Cocke,
Electrocoagulation (EC)—science and applications,
J. Hazard.
Mater., 84 (2001) 29–41.
- V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, Recent
applications of electrocoagulation in treatment of water and
wastewater—a review, Green Sustainable Chem., 3 (2013), doi:
10.4236/gsc.2013.32013.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar,
L.A. Escaleira, Response surface methodology (RSM) as a tool
for optimization in analytical chemistry, Talanta, 76 (2008)
965–977.
- B.K. Nandi, S. Patel, Effects of operational parameters on the
removal of brilliant green dye from aqueous solutions by
electrocoagulation, Arabian J. Chem., 10 (2017) S2961–S2968.
- A. Sheikhmohammadi, B. Hashemzadeh, A. Alinejad,
S.M. Mohseni, M. Sardar, R. Sharafkhani, M. Sarkhosh,
E.
Asgari, A. Bay, Application of graphene oxide modified with
the phenopyridine and 2-mercaptobenzothiazole for the
adsorption of Cr(VI) from wastewater: optimization, kinetic,
thermodynamic and equilibrium studies, J. Mol. Liq., 285 (2019)
586–597.
- A. Mohammadi, S. Nemati, M. Mosaferi, A. Abdollahnejhad,
M. Almasian, A. Sheikhmohammadi, Predicting the capability
of carboxymethyl cellulose-stabilized iron nanoparticles for the
remediation of arsenite from water using the response surface
methodology (RSM) model: modeling and optimization,
J. Contam. Hydrol., 203 (2017) 85–92.
- H. Godini, A. Sheikhmohammadi, L. Abbaspour, R. Heydari,
G.S. Khorramabadi, M. Sardar, Z. Mahmoudi, Energy
consumption and photochemical degradation of Imipenem/Cilastatin antibiotic by process of UVC/Fe2+/H2O2 through
response surface methodology, Optik, 182 (2019) 1194–1203.
- S. Sathe, Culturing and Harvesting Marine Microalgae for the
Large-Scale Production of Biodiesel, Thesis, The University of
Adelaide, Australia, 2010.
- C.T. Matos, M. Santos, B.P. Nobre, L. Gouveia, Nannochloropsis
sp. biomass recovery by electro-coagulation for biodiesel and
pigment production, Bioresour. Technol., 134 (2013) 219–226.
- K. Thirugnanasambandham, R. Ganesamoorthy, Dual treatment
of milk processing industry wastewater using electro-Fenton
process followed by anaerobic treatment, Int. J. Chem. Reactor
Eng., 17 (2019), doi:10.1515/ijcre-2019-0074.
- S. Gao, J. Yang, J. Tian, F. Ma, G. Tu, M. Du, Electro-coagulation–
flotation process for algae removal, J. Hazard. Mater., 177 (2010)
336–343.
- P.K. Holt, G.W. Barton, C.A. Mitchell, The future for
electrocoagulation as a localised water treatment technology,
Chemosphere, 59 (2005) 355–367.
- P. Holt, G. Barton, C. Mitchell, Electrocoagulation as a
Wastewater Treatment, The Third Annual Australian
Environmental Engineering Research Event, 1999, pp. 41–46.
- K. Thirugnanasambandham, K. Shine, Hydrogen gas production
from sago industry wastewater using electrochemical reactor:
simulation and validation, Energy Sources Part A, 38 (2016)
2258–2264.
- J. Koren, U. Syversen, State-of-the-art electroflocculation,
Filtr. Sep., 32 (1995) 153–146.
- M.-F. Pouet, A. Grasmick, Urban wastewater treatment
by electrocoagulation and flotation, Water Sci. Technol.,
31 (1995) 275–283.