References

  1. X. Zhu, Research on electrical energy saving design of water conservancy project, Sci. Technol. Vision, (2019) 10 181–182.
  2. H. Lou, Massive ship fault data retrieval algorithm supporting complex query in cloud computing, J. Coastal Res., 93 (2019) 1013–1018.
  3. H. Bai, H. Shi, Q. Zhang, L. Bai, Research on control method of tidal power generation simulator based on LabVIEW, Electric. Eng., 19 (2018) 5–9.
  4. J. Meshkati, F. Safi-Esfahani, Energy-aware resource utilization based on particle swarm optimization and artificial bee colony algorithms in cloud computing, J. Supercomputing, 75 (2019) 2455–2496.
  5. C. Yang, L. Li, S.X. You, B.J. Yan, X. Du, Cloud computing-based energy optimization control framework for plug-in hybrid electric bus, Energy, 125 (2017) 11–24.
  6. S. Vila, F. Guirado, J.L. Lerida, F. Cores, Energy-saving scheduling on IaaS HPC cloud environments based on a multiobjective genetic algorithm, J. Supercomputing, 75 (2018) 1–13.
  7. M. Zhang, W. Wang, J. Shi, D. Zhao, Optimization of dispatching cloud based on power big data, Comput. Simul., 31 (2014) 123–126+137.
  8. A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. Prakash Jayaraman, J. Kolodziej, P. Balaji, S. Zeadally,
    Q.M. Malluhi, N. Tziritas, A. Vishnu, S.U. Khan, A. Zomaya, A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems, Computing, 98 (2016) 751–774.
  9. T. Yang, M. Wang, Y. Zhang, Y. Zhao, H. Pen, HDFS differential storage energy-saving optimal algorithm in cloud data center, Chin. J. Comput., 42 (2019) 721–735.
  10. Z.H. Lv, W.Q. Xiu, Interaction of edge-cloud computing based on SDN and NFV for next generation IOT, IEEE Internet Things J., 7 (2020) 5706–5712.
  11. Z. Zhou, Z. Hu, Virtual machine deployment algorithm for reducing energy consumption in cloud computing,
    J. South China Univ. Technol. (Natural Science Edition), 42 (2014) 109–114.
  12. J. Jiang, Y. Liu, L. Wang, J. Chen, N. Huang, X. Wei, VM selection energy-efficiency algorithm based on heuristic backward artificial bee colony method in data clouds, J. Jilin Univ. (Science Edition), 52 (2014) 1239–1248.
  13. X. Zhang, Z. He, C. Li, H. Zhang, Q. Qian, Research on energy saving algorithm of datacenter in cloud computing system, Appl. Res. Comput., 30 (2013) 961–964+970.
  14. B. Ni, Energy efficient data placement algorithm and node scheduling strategy of cloud computing system, Mod. Electron. Tech., 38 (2015) 80–82.
  15. E.E. Okon, J.O. Ikeh, C.J. Offodile, Near - surface characterization of sediments of the Sokoto group exposed around Wamakko Area, Northwestern Nigeria: an integrated approach, Geol. Ecol. Landscapes, 5 (2021) 81–93.
  16. J.D. Prasetya, D.H. Santoso, E. Muryani, T. Ramadhamayanti, B.A.S. Yudha, Carrying capacity of mercury pollution to rivers in the gold mining area of Pancurendang Village, Banyumas, J. Clean WAS, 5 (2021) 1–4.
  17. D.L. Zhu, B. Wang, H.R. Ma, H.X. Wang, Evaluating the vulnerability of integrated electricity-heat-gas systems based on the high-dimensional random matrix theory, CSEE J. Power Energy Syst., 6 (2020) 878–889.
  18. Z. Zhao, J. Gao, Robustness of water hammer protection of different formulas of frictional head loss, Desal. Water Treat., 187 (2020) 172–177.
  19. Y.-H. Chu, J. Chuang, H. Zhang, A Case for Taxation in Peer-to-Peer Streaming Broadcast, Proc of ACM SIGCOMM Workshop Practice Theory Incentives Networked Systems, ACM Press, New York, 2004,
    pp. 205–212.
  20. C.H. Hsu, M. Hefeeda, Achieving Viewing Time Scalability in Mobile Video Streaming Using Scalable Video Coding, Proc. of the 1st Annual ACM Conference on Multimedia System, ACM Press, New York, 2010, pp. 111–122.
  21. N. Cranley, P. Perry, L. Murphy, User perception of adapting video quality, Int. J. Hum. Comput. Stud., 64 (2006) 637–647.
  22. T. Zinner, O. Hohlfeld, O. Abboud, T. Hossfeld, Impact of Frame Rate and Resolution on Objective QoE Metrics, Proc. of the 2010 Second International Workshop on Quality of Multimedia Experience (QoMEX), IEEE, Trondheim, Norway, 2010, pp. 29–34.
  23. J.M. Monteiro, M.S. Nunes, A Subjective Quality Estimation Tool for the Evaluation of Video Communication Systems, Proc. of the 12th IEEE Symposium on Computers and Communications, July 1–4, Aveiro, Portugal, 2007, pp. 75–80.
  24. K.D. Singh, A. Ksentini, B. Marienval, Quality of Experience Measurement Tool for SVC Video Coding, Proc. of 2011 IEEE International Conference on Communications (ICC), IEEE, Kyoto, Japan, 2011, pp. 1–5.
  25. N. Gao, Y.Y. Zhang, A low frequency underwater metastructure composed by helix metal and viscoelastic damping rubber, J. Vibr. Control, 25 (2019) 538–548.
  26. H.N. Yu, S.H. Shen, G.P. Qian, X.B. Gong, Packing theory and volumetrics-based aggregate gradation design method, J. Mater. Civ. Eng., 32 (2020), doi: 10.1061/(ASCE)MT.1943-5533.0003192.
  27. J.K. Liu, Y.Q. Yi, X.T. Wang, Exploring factors influencing construction waste reduction: a structural equation modeling approach, J. Cleaner Prod., 276 (2020) 123185, doi: 10.1016/j. jclepro.2020.123185.
  28. X.Q. Han, D. Zhang, J.J. Yan, S.R. Zhao, J.P. Liu, Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards zero liquid discharge: energetic, economic and environmental analyses, J. Cleaner Prod., 261 (2020) 121144, doi: 10.1016/j.jclepro.2020.121144.
  29. X.F. Hu, P.H. Ma, B.B. Gao, M. Zhang, An integrated step-up inverter without transformer and leakage current for gridconnected photovoltaic system, IEEE Trans. Power Electron., 34 (2019) 9814–9827.
  30. X.F. Hu, P.H. Ma, J.Z. Wang, G.D. Tan, A hybrid cascaded DC–DC boost converter with ripple reduction and large conversion ratio, IEEE J. Emerging Sel. Top. Power Electron., 8 (2019) 761–770.
  31. S. Liu, F.T.S. Chan, W.X. Ran, Decision making for the selection of cloud vendor: an improved approach under group decisionmaking with integrated weights and objective/subjective attributes, Expert Syst. Appl., 55 (2016) 37–47.