References
- H. Stephan, P.F. Matthew, R.C. Siri, P.D. Stephen, W. Paul,
C. Miguel, Quinolones: from antibiotics to autoinducers, FEMS
Microbiol. Rev., 35 (2011) 247–274.
- C. Agnieszka, P. Rama, B.S. Kaur, D. Patrick, V. Mausam,
Y.S. Rao, Fluoroquinolones metal complexation and its
environmental impacts, Coord. Chem. Rev., 376 (2018) 46–61.
- L.H. Santos, A.N. Araújo, A. Fachini, A. Pena, C. Delerue-Matos,
M.C.B.S.M. Montenegro, Ecotoxicological aspects related to
the presence of pharmaceuticals in the aquatic environment,
J. Hazard. Mater., 175 (2010) 45–95.
- A. Anglada, A. Urtiaga, I. Ortiz, Pilot scale performance of the
electro-oxidation of landfill leachate
at boron-doped diamond
anodes, Environ. Sci. Technol., 43 (2009) 2035–2040.
- Y.H. Chuang, A. Szczuka, F. Shabani, J. Munoz, R. Aflaki,
S.D. Hammond, W.A. Mitch, Pilot-scale comparison of
microfiltration/reverse osmosis and ozone/biological activated
carbon with UV/hydrogen peroxide or UV/free chlorine AOP
treatment for controlling disinfection byproducts during
wastewater reuse, Water Res., 152 (2019) 215–225.
- M.A. Sarayba, N. Shamie, B.J. Reiser, P.M. Sweet, M. Taban,
J.M. Graff, A. Kesler-Diaz, K.E. Osann, P.J. McDonnell,
Fluoroquinolone therapy in Mycobacterium chelonae keratitis after lamellar keratectomy, J. Cataract. Refract. Surg., 31 (2005)
1396–1402.
- S.B. Hammouda, F. Zhao, Z. Safaei, V. Srivastav, D.L. Ramasamy,
S. Iftekhar, S. Kalliola, M. Sillanpää, Degradation and
mineralization of phenol in aqueous medium by heterogeneous
monopersulfate activation on nanostructured cobalt
based-Perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce):
characterization, kinetics and mechanism study, Appl. Catal., B,
215 (2017) 60–73.
- G.P. Anipsitakis, D.D. Dionysiou, Degradation of organic
contaminants in water with sulfate radicals generated by the
conjunction of peroxymonosulfate with cobalt, Environ. Sci.
Technol., 37 (2003) 4790−4797.
- Y.Q. Liu, X.X. He, Y.S. Fu, D.D. Dionysou, Kinetics and
mechanism investigation on the destruction of oxytetracycline
by UV-254 nm activation of persulfate, J. Hazard. Mater.,
305 (2016) 229–239.
- Y. Zhang, M. Xu, S. Liang, Z. Feng, J. Zhao, Mechanism of
persulfate activation by biochar for the catalytic degradation
of antibiotics: synergistic effects of environmentally persistent
free radicals and the defective structure of biochar, Sci. Total
Environ., 794 (2021) 148707, doi: 10.1016/j.scitotenv.2021.148707.
- C. Chokejaroenrat, C. Sakulthaew, A. Angkaew, T. Satapanajaru,
A. Poapolathep, T. Chirasatienpon, Remediating sulfadimethoxine-
contaminated aquaculture wastewater using ZVIactivated
persulfate
in a flow-through system, Aquacult. Eng.,
84 (2019) 99–105.
- M.H. Nie, Y. Yang, Z.J. Zhang, C.X. Yan, X.N. Wang, H.J. Li, W.B.
Dong, Degradation of chloramphenicol by thermally activated
persulfate in aqueous solution, Chem. Eng. J., 246 (2014)
373–382.
- I. Epold, M. Trapido, N. Dulova, Degradation of levofloxacin in
aqueous solutions by Fenton, ferrous
ion-activated persulfate
and combined Fenton/persulfate systems, Chem. Eng. J.,
279 (2015) 452–462.
- I. Hussain, Y. Zhang, S. Huang, Q.Y. Gao, Degradation of
p-chloroaniline by FeO3–xH3–2x/Fe0 in the presence of persulfate
in aqueous solution, RSC Adv., 5 (2015) 41079–41087.
- J. Peng, Z. Wang, S. Wang, J. Liu, Y. Zhang, B. Wang, Z. Gong,
M. Wang, H. Dong, J. Shi, H. Liu, G. Yan, G. Liu, S. Gao, Z. Cao,
Enhanced removal of methylparaben mediated by cobalt/
carbon nanotubes (Co/CNTs) activated peroxymonosulfate
in chloride-containing water: reaction kinetics, mechanisms
and pathways, Chem. Eng. J., 409 (2021) 128176, doi: 10.1016/j.
cej.2020.128176.
- M. Zou, Y. Qi, R. Qu, G. Al-Basher, X. Pan, Z. Wang, Z. Huo,
F. Zhu, Effective degradation of
2,4-dihydroxybenzophenone
by zero–valent iron powder (Fe0)-activated persulfate in
aqueous solution: kinetic study, product identification and
theoretical calculations, Sci. Total Environ., 771 (2021) 144743,
doi:10.1016/j.scitotenv.2020.144743.
- I. Hussain, Y. Zhang, S. Huang, Degradation of aniline with
zero-valent iron as an activator of persulfate in aqueous
solution, RSC Adv., 4 (2014) 3502–3511.
- J.L. Wang, S.Z. Wang, Activation of persulfate (PS) and
peroxymonosulfate (PS) and application for the degradation of
emerging contaminants, Chem. Eng. J., 334 (2018) 1502–1517.
- Q. Zhao, Q. Mao, Y. Zhou, J.H. Wei, X.C. Liu, J.Y. Yang,
L. Luo, J. Zhang, H. Chen, H. Chen, L. Tang, Metal-free carbon
materials-catalyzed sulfate radical-based advanced oxidation
processes: a review on heterogeneous catalysts and applications,
Chemosphere, 189 (2017) 224–238.
- W.A. Carvalho, M. Wallau, U. Schuchardt, Iron and copper
immobilised on mesoporous MCM-41 molecular sieves as
catalysts for the oxidation of cyclohexane, J. Mol. Catal. A:
Chem., 144 (1999) 91–99.
- A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased
ferrous-peroxymonosulfate oxidative system for PCBs
degradation in aqueous and sediment systems, Appl. Catal., B,
85 (2009) 171–179.
- B. Zhao, X.Y. Wang, Advances in modification of mesoporous
molecular sieve MCM-41 for oxidation reaction, Ind. Catal.,
21 (2013) 1–5.
- S. Singha, K.M. Parida, A.C. Dash, Fe(III)-salim anchored MCM-
41: synthesis, characterization and catalytic activity towards
liquid phase cyclohexane oxidation, J. Porous Mater., 18 (2011)
707–714.
- M. Xia, M.C. Long, Y.D. Yang, C. Chen, W.M. Cai, B.X. Zhou,
A highly active bimetallic oxides catalyst supported on
Al-containing MCM-41 for Fenton oxidation of phenol solution,
Appl. Catal., B, 110 (2011) 118–125.
- L. Bekris, Z. Frontistis, G. Trakakis, L. Sygellou, C. Galiotis,
D. Mantzavinos, Graphene: a new activator of sodium persulfate
for the advanced oxidation of parabens in water, Water Res.,
126 (2017) 111–121.
- S. Karthikeyan, R. Boopathy, G. Sekaran, In situ generation
of hydroxyl radical by cobalt oxide supported porous carbon
enhance removal of refractory organics in tannery dyeing
wastewater, J. Colloid Interface Sci., 448 (2015) 163–174.
- T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee,
Chemical functionalization of graphene and its applications,
Prog. Mater Sci., 57 (2012) 1061–1105.
- H. Sun, S. Liu, G. Zhou, H.M. Ang, M.O. Tadé, S. Wang, Reduced
grapheme oxide for catalytic oxidation of aqueous organic
pollutants, ACS Appl. Mater. Interfaces, 4 (2012) 5466–5471.
- P. Zhang, J.S. Wei, X.B. Chen, H.M. Xiong, Heteroatom-doped
carbon dots based catalysts for oxygen reduction reactions,
J. Colloid Interface Sci., 537 (2019) 716–724.
- R. Ediati, P.B.F. Laharto, R. Safitri, H. Mahfudhah, D.O. Sulistiono,
T.D. Syukrie, M. Nadjib, Synthesis of HKUST-1 with addition of
Al-MCM-41 as adsorbent for removal of methylene blue from
aqueous solution, Mater. Today:. Proc., 46 (2021) 1799–1806.
- W.X. Niu, R. Luque, G.B. Xu, Solvothermal synthesis of metal
nanocrystals and their applications, Nano Today, 10 (2015)
240–267.
- Y. Nie, N. Li, C. Hu, Enhanced inhibition of bromate formation
in catalytic ozonation of organic pollutants over Fe-Al LDH/
Al2O3, Sep. Purif. Technol., 151 (2015) 256–261.
- X. Duan, Z. Ao, L. Zhou, H.Q. Sun, G.X. Wang, S.B. Wang,
Occurrence of radical and nonradical pathways from
carbocatalysts for aqueous and nonaqueous catalytic oxidation,
Appl. Catal., B, 188 (2016) 98–105.
- G. Trakakis, G. Anagnostopoulos, L. Sygellou, A. Bakolas,
J. Parthenios, D. Tasis, C. Galiotis, K. Papagelis, Epoxidized
multi-walled carbon nanotube buckypapers: a scaffold for
polymer nanocomposites with enhanced mechanical properties,
Chem. Eng. J., 281 (2015) 793–803.
- X. Li, W. Chen, Y. Tang, L.S. Li, Relationship between the
structure of Fe-MCM-48 and its activity in catalytic ozonation
for diclofenac mineralization, Chemosphere, 206 (2018) 615–621.
- W. Chen, X. Li, Z. Pan, S.S. Ma, L.S. Li, Effective mineralization
of Diclofenac by catalytic ozonation using
Fe-MCM-41 catalyst,
Chem. Eng. J., 304 (2016) 594–601.
- H. Sun, S. Liu, S. Liu, S.B. Wang, A comparative study of reduced
graphene oxide modified TiO2, ZnO and
Ta2O5, in visible light
photocatalytic/photochemical oxidation of methylene blue,
Appl. Catal., B,
146 (2014) 162–168.
- C.P. Guthrie, E.J. Reardon, Metastability of MCM-41 and
Al-MCM-41, J. Phys. Chem. A, 112 (2008) 3386–3390.
- A.L.T. Pham, D.L. Sedlak, F.M. Doyle, Dissolution of
mesoporous silica supports in aqueous solutions: implications
for mesoporous silica-based water treatment processes, Appl.
Catal., B, 126 (2012) 258–264.
- C.H. Yao, Y.Q. Zhang, M.M. Du, X.D. Du, S.B. Huang, Insights
into the mechanism of non-radical activation of persulfate via
activated carbon for the degradation of p-chloroaniline, Chem.
Eng. J., 362 (2019) 262–268.
- Y.H. Guan, J. Ma, Y.M. Ren, Y.L. Liu, J.Y. Xiao, L.Q. Lin,
C. Zhang, Efficient degradation of atrazine by magnetic porous
copper ferrite catalyzed peroxymonosulfate oxidation via the
formation of hydroxyl and sulfate radicals, Water Res., 47 (2013)
5431–5438.
- W. Wilmarth, A. Haim, Peroxide reactions mechanisms, Inorg.
Chem., 175 (1962) 976–977.
- X.G. Duan, S. Indrawirawan, J. Kang, W.J. Tian, H.Y. Zhang,
H.Q. Sun, S.B. Wang, Temperature-dependent evolution of
hydroxyl radicals from peroxymonosulfate activation over
nitrogen-modified carbon nanotubes, Sustainable Mater.
Technol., 18 (2018) e00082, doi: 10.1016/j.susmat.2018.e00082.
- L. Zhao, H. Hou, A. Fujii, M. Hosomi, F. Li, Degradation of
1,4-dioxane in water with heat- and Fe2+-activated persulfate
oxidation, Environ. Sci. Pollut. Res., 21 (2014) 7457–7465.
- X. Pan, J. Chen, N. Wu, Y. Qi, X. Xu, J. Ge, X. Wang, C. Li,
R. Qu, V.K. Sharma, Z. Wang, Degradation of aqueous
2,4,4’-trihydroxybenzophenone by persulfate activated with
nitrogen doped carbonaceous materials and the formation of
dimer products, Water Res., 143 (2018) 176–187.
- N.B. Oncu, N. Mercan, I.A. Balcioglu, The impact of ferrous
iron/heat-activated persulfate treatment on waste sewage
sludge constituents and sorbed antimicrobial micropollutants,
Chem. Eng. J., 259 (2015) 972–980.
- H. Klöppel, A. Fliedner, W. Kördel, Behaviour and ecotoxicology
of aluminium in soil and water — review of the scientific
literature, Chemosphere, 35 (1997) 353–363.