References

  1. BP, BP Statistical Review of World Energy, 2018, pp. 1–56. Available at: https://www.bp.com/en/global/corporate/energyeconomics/ statistical-review-of-world-energy.html
  2. M. Li, World Energy 2018–2050: Annual Report (Part 1), 2018, pp. 1–24. Available at: https://daily.energybulletin.org/2018/06/ world-energy-2018-2050-world-energy-annual-report-part-1/
  3. M. Singh, R. Siddique, Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete, J. Cleaner Prod., 112 (2016) 620–630.
  4. M. Singh, R. Siddique, Effect of coal bottom ash as partial replacement of sand on properties of concrete, Resour. Conserv. Recycl., 72 (2013) 20–32.
  5. H.-J. Feuerborn, Coal Ash Utilisation Over the World and in Europe, Workshop on Environmental and Health Aspects of Coal Ash Utilization, International Workshop, Tel-Aviv, Israel, 23rd–24th November 2005.
  6. H.W. Huang, The Use of Bottom Ash in Highway Embankments, Subgrade, and Subbases, Joint Highway Research Project, Final Report, FHWA/IN/JHRP-90/4, Purdue Univ., W. Lafayette, Ind., 1990.
  7. A. Muhardi, A. Marto, K.A. Kassim, A.M. Makhtar, L.F. Wei, Y.S. Lim, Engineering characteristics of Tanjung Bin coal ash, Electron. J. Geotech. Eng., 15 (2010) 1117–1129.
  8. C. Heidrich, H.-J. Feuerborn, A. Weir, Coal combustion products. a global perspective, World of Coal Ash (WOCA) Conference, Lexington, KY, 2013, pp. 22–25.
  9. F. Hills, Coal Ash Material Safety: A Health Risk-Based Evaluation of USGS Coal Ash Data from Five US Power Plants, 2013 World of Coal Ash Conference (April 22–25, 2013) in Lexington, Kentucky, 2013.
  10. F. Sanchez, D. Kosson, R. Keeney, R. Delapp, L. Turner, P. Kariher, S. Thorneloe, Characterization of Coal Combustion Residues from Electric Utilities Using Wet Scrubbers for Multi-Pollutant Control, US Environmental Protection Agency, Washington DC, 2008.
  11. N. Singh, M. Mithulraj, S. Arya, Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: a review, Resour. Conserv. Recycl., 138 (2018) 257–271.
  12. N.I.R.R. Hannan, S. Shahidan, N. Ali, M.Z. Maarof, A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material, International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016), MATEC Web Conf., 103 (2017) 01005, 1–10, doi:10.1051/matecconf/201710301005.
  13. S. Naganathan, S. Jamali, S. Silvadanan, T.Y. Chung, M.F. Nicolasselvam, Use of bottom ash and fly ash in masonry mortar, J. Constr. Build. Mater., 1 (2016) 52–57.
  14. A. Wongsa, Y. Zaetang, V. Sata, P. Chindaprasirt, Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates, Constr. Build. Mater., 111 (2016) 637–643.
  15. H. Güllü, Factorial experimental approach for effective dosage rate of stabilizer: application for fine-grained soil treated with bottom ash, Soils Found., 54 (2014) 462–477.
  16. S. Malik, Effect of climate change and its implications onward/ toward Pakistan, Environ. Contam. Rev., 3 (2020) 13–15, doi: 10.26480/ecr.01.2020.13.15.
  17. A.R. Awang, A. Marto, A.M. Makhtar, Geotechnical properties of tanjung bin coal ash mixtures for backfill materials in embankment construction, Electron. J. Geotech. Eng., 16 (2011) 1515–1531.
  18. B. Kim, M. Prezzi, Compaction characteristics and corrosivity of Indiana class-F fly and bottom ash mixtures, Constr. Build. Mater., 22 (2008) 694–702.
  19. B. Kim, M. Prezzi, R. Salgado, Geotechnical properties of fly and bottom ash mixtures for use in highway embankments, J. Geotech. Environ. Eng., 131 (2005) 914–924.
  20. M.H. Wan Ibrahim, A.F. Hamzah, N. Jamaluddin, P.J. Ramadhansyah, A.M. Fadzil, Split tensile strength on selfcompacting concrete containing coal bottom ash, Procedia – Social Behav. Sci., 195 (2015) 2280–2289.
  21. M. Rafieizonooz, M.R. Salim, M.H. Hussin, J. Mirza, S.M. Yunus, E. Khankhaje, Workability, compressive strength and leachability of coal ash concrete, Chem. Eng. Trans., 56 (2017) 439–444.
  22. S.N. Sadon, S. Beddu, S. Naganathan, N.L. Mohd Kamal, H. Hassan, Coal bottom ash as sustainable material in concrete – a review, Indian J. Sci. Technol., 10 (2017) 1–10.
  23. P. Colonna, N. Berloco, V. Ranieri, S. Shuler, Application of bottom ash for pavement binder course, Procedia – Social Behav. Sci., 53 (2012) 961–971.
  24. A. Abdul Kadir, M.I.H. Hassan, E.C.K. Yang, Leachability of self-compacting concrete (SCC) incorporated with fly ash and bottom ash by using toxicity characteristic leaching procedure (TCLP), Appl. Mech. Mater., 773–774 (2006) 1271–1275.
  25. F. Mumtaz, Y. Tao, B. Bashir, H. Faiz, M. Kareem, A. Ahmad, H.U. Hassan. The impact of the lockdown on air quality in result of Covid-19 pandemic over Hubei Province, China, Environ. Ecosyst. Sci., 5 (2021) 15–22.
  26. S. Regmi, M. Paudel, A review on host preference, damage severity and integrated pest management of red pumpkin beetle, Environ. Contam. Rev., 3 (2020) 16–20.
  27. H.M. Alhassan, A.M. Tanko, Characterization of solid waste incinerator bottom ash and the potential for its use, Int. J. Eng. Res. Appl., 2 (2012) 516–522.
  28. A. Marto, A.R. Awang, A.M. Makhtar, Compaction Characteristics and Permeability of Tanjung Bin Coal Ash Mixtures, 2011 International Conference on Environment Science and Engineering, IPCBEE, IACSIT Press, Singapore, 2011, pp. 134–137.
  29. A. Marto, M. Abukar, A.M. Makhtar, B.A.B. Othman, Shear strength improvement of soft clay mixed with Tanjung bin coal ash, APCBEE Procedia, 5 (2013) 116–122.
  30. A. Umar Abubakar, S. Khairul, K.S. Baharudin, Properties of concrete using Tanjung bin power plant coal bottom ash and fly ash, Int. J. Sustainable Const. Eng. Technol., 3 (2012) 2180–3242.
  31. B.A. Mir, A. Malik, Studies on the mechanical behavior of bottom ash for a sustainable environment, Int. J. Civ. Environ. Eng., 11 (2017) 857–863.
  32. K. Ali, J.T. Shahu, K.G. Sharma, Behaviour of Reinforced Stone Columns in Soft Soils: An Experimental Study, Indian Geotechnical Conference – 2010, GEOtrendz, IGS Mumbai Chapter & IIT Bombay, December 16–18, 2010, pp. 625–628.
  33. M.Y. Fattah, M.A. Al-Neami, A.S. Al-Suhaily, Estimation of bearing capacity of floating group of stone columns, Eng. Sci. Technol. Int. J., 20 (2017) 1166–1172.
  34. W. Frikha, F. Tounekti, W. Kaffel, M. Bouassida, Experimental study for the mechanical characterization of Tunis soft soil reinforced by a group of sand columns, Soils Found., 55 (2015) 181–191.
  35. C.B. Mukul, S.K. Dash, Load Deformation Behaviour of Floating Stone Columns in Soft Clay, Indian Geotechnical Conference 2010, Indian Institute of Technology Bombay, 2010, pp. 251–254.
  36. S. Tabchouche, M. Mellas, M. Bouassida, On settlement prediction of soft clay reinforced by a group of stone columns, Innovative Infrastruct. Solutions, 2 (2017) doi: 10.1007/s41062-016-0049-0.
  37. S. Kumar, J. Stewart, Evaluation of Illinois pulverized coal combustion dry bottom ash for use in geotechnical engineering applications, J. Energy Eng., 129 (2003) 42–55.
  38. A.D. Tolche, Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia, Geol. Ecol. Landscapes, 5 (2021) 65–80.
  39. I. Sufiyan, K.D. Mohammed, J.I. Magaji, Assessment of crop yield and rainfall simulation in Nasarawa Town Nasarawa State Nigeria, J. CleanWAS, 4 (2020) 75–78.
  40. M. Hasan, A. Marto, M. Hyodo, A.M. Makhtar, The strength of soft clay reinforced with singular and group bottom ash columns, Electron. J. Geotech. Eng., 16 (2011) 1215–1227.
  41. M. Hasan, A. Marto, A. Mahir, M. Muttaqin, Shear strength parameters and consolidation of clay reinforced with single and group bottom ash columns, Arabian J. Sci. Eng., 39 (2014) 2641–2654.
  42. M. Hasan, N. Pangee, S. Suki, Shear strength of soft clay reinforced with single encased bottom ash columns, ARPN J. Eng. Appl. Sci., 11 (2016) 1562–1569.
  43. J. Black, V. Sivakumar, J.D. McKinley, Performance of clay samples reinforced with vertical granular columns, Can. Geotech. J., 44 (2007) 89–95.
  44. S.S. Najjar, S. Sadek, T. Maakaroun, Effect of Sand Columns on the Load Response of Soft Clays, International Foundation Congress and Equipment, Expo American, 2009, pp. 217–224.
  45. R. Moradi, A. Marto, A.S.A. Rashid, M.M. Moradi, A.A. Ganiyu, M.H. Abdullah, S. Horpibulsuk, Enhancement of soft soil behaviour by using floating bottom ash columns, KSCE J. Civ. Eng., 23 (2019) 2453–2462.
  46. R. Moradi, A. Marto, A.S.A. Rashid, M.M. Moradi, A.A. Ganiyu, S. Horpibulsuk, Bearing capacity of soft soil model treated with end-bearing bottom ash columns, Environ. Earth Sci., 77 (2018) 100,
    doi:10.1007/s12665-018-7287-8.
  47. A. Marto, N.A. Rosly, C.S. Tan, F. Kasim, NZ.M. Yunus, R. Moradi, Bearing capacity of soft clay installed with singular and group of encased bottom ash columns, J. Teknologi, 78 (2016) 105–110.
  48. M. Sakthivadivel, A. Nirmala, J. Sakthivadivel, R.R. Mukhilan, S. Tennyson, Physicochemical and biological parameters of water at industrial sites of Metropolitan City of Chennai, Tamil Nadu, India, Water Conserv. Manage., 4 (2020) 86–94.
  49. H. Amin, B.A. Arain, T.M. Jahangir, A.R. Abbasi, J. Mangi, M.S. Abbasi, F. Amin, Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique, Geol. Ecol. Landscapes, 5 (2021) 53–64.
  50. A.S.A. Rashid, J.A. Black, A.B.H. Kueh, N. Md Noor, Behaviour of weak soils reinforced with soil cement columns formed by the deep mixing method: rigid and flexible footings, Measurement, 68 (2015) 262–279.
  51. A.S.A. Rashid, A.B.H. Kueh, H. Mohamad, Behaviour of soft soil improved by floating soil–cement columns, Int. J. Phys. Modell. Geotech., 18 (2017) 95–116.
  52. A.S.A. Rashid, J.A. Black, H. Mohamad, N. Mohd Noor, Behavior of weak soils reinforced with end-bearing soil-cement columns formed by the deep mixing method, Mar. Georesour. Geotechnol., 33 (2015) 473–486.
  53. K. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, 1996.
  54. M. Bouassida, L. Hazzar, Novel Tool for Optimised Design of Reinforced Soils by Columns, Proceedings of the Institution of Civil Engineers Ground Improvement, 165 (2012) 31–40.
  55. M. Bouassida, J.P. Carter, Optimization of design of columnreinforced foundations, Int. J. Geomech., 14 (2014) 04014031, doi: 10.1061/(asce)gm.1943-5622.0000384.
  56. M. Bouassida, L. Hazzar, Chapter 16 – Performance of Soft Clays Reinforced by Floating Columns, B. Indraratna, J. Chu, C. Rujikiatkamjorn, Eds., Ground Improvement Cases Histories, Embankments with Special Reference to Consolidation and Other Physical Methods, Butterworth-Heinemann, Elsevier, 2015,
    pp. 433–449.
  57. K.N. Mat Said, A.S.A. Rashid, N.K. Shien, N.Z. Mohd Yunus, Load Transfer Mechanism of Group of Floating
    Soil-Cement Column In mproving Soft Ground, IOP Conf. Ser.: Earth Environ. Sci, 220 (2019) 012003, doi:10.1088/1755-1315/220/1/012003.
  58. K. Nissa Mat Said, A.S.A. Rashid, A. Osouli, A. Latifi, N. Zurairahetty, N. Mohd Yunus, A. Adekunle Ganiyu, Settlement evaluation of soft soil improved by floating soil cement column, Int. J. Geomech., 19 (2019) 04018183, doi: 10.1061/(ASCE)GM.1943-5622.0001323.
  59. M. Hasan, A. Marto, M. Hyodo, Strength of Soft Soil Reinforced with Single and Group of Bottom Ash Columns, The 2014 World Congress on Advanced in Civil, Environmental and Materials Research (ACEM14), Busan, Korea, August 24–28 (2014), pp. 1–11.
  60. N.M.P. Rangaswamy, Compressibility and Strength Characteristics of Soft Clay Treated with Bottom Ash, Indian Geotechnical Conference, 2015, pp. 1–9, doi: 10.1061/40552(301)16.2.Moses.