References
- R.P. Arani, R. Sathyamurthy, A. Chamkha, A.E. Kabeel,
M. Deverajan, K. Kamalakannan, M. Balasubramanian,
A.M. Manokar, F. Essa, A. Saravanan, Effect of fins and silicon
dioxide nanoparticle black paint on the absorber plate for
augmenting yield from tubular solar still, Environ. Sci. Pollut.
Res. Int., 28 (2021) 35102–35112.
- H. Panchal, H. Nurdiyanto, K.K. Sadasivuni, S.S. Hishan,
F.A. Essa, M. Khalid, S. Dharaskar, S. Shanmugan, Experimental
investigation on the yield of solar still using manganese
oxide nanoparticles coated absorber, Case Stud. Therm. Eng.,
25 (2021) 100905, doi: 10.1016/j.csite.2021.100905.
- F.A. Essa, Z.M. Omara, A.S. Abdullah, S. Shanmugan,
H. Panchal, A.E. Kabeel, R. Sathyamurthy, W.H. Alawee,
A. Muthu Manokar, A.H. Elsheikh, Wall-suspended trays
inside stepped distiller with Al2O3/paraffin wax mixture and
vapor suction: experimental implementation, J. Energy Storage,
32 (2020) 102008, doi:10.1016/j.est.2020.102008.
- A.E. Kabeel, R. Sathyamurthy, A. Muthu Manokar, S.W. Sharshir,
F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar
still using graphene oxide nanoparticles in phase change
material (NPCM’s) for fresh water production, J. Energy Storage,
28 (2020) 101204, doi: 10.1016/j.est.2020.101204.
- F.A. Essa, A.S. Abdullah, Z.M. Omara, Rotating discs solar still:
new mechanism of desalination, J. Cleaner Prod., 275 (2020)
123200, doi: 10.1016/j.jclepro.2020.123200.
- Z.M. Omara, A.E. Kabeel, A.S. Abdullah, F.A. Essa.,
Experimental investigation of corrugated absorber solar still
with wick and reflectors, Desalination, 381 (2016) 111–116.
- A.S. Abdullah, F.A. Essa, Z.M. Omara, Y. Rashid, L. Hadj-
Taieb, G.B. Abdelaziz, A.E. Kabeel, Rotating-drum solar still
with enhanced evaporation and condensation techniques:
comprehensive study, Energy Convers. Manage., 199 (2019)
112024, doi: 10.1016/j.enconman.2019.112024.
- S. Shanmugan, F.A. Essa, S. Gorjianc, A.E. Kabeel, R. Sathyamurthy,
A. Muthu Manokar, Experimental study on single
slope single basin solar still using TiO2 nano layer for natural
clean water invention, J. Energy Storage, 30 (2020) 101522, doi:
10.1016/j.est.2020.101522.
- R. Parikh, U. Patdiwala, S. Parikh, H. Panchal, K. K. Sadasivuni,
Performance enhancement using TiO2 nanoparticles in solar
still at variable water depth, Int. J. Ambient Energy, (2021),
doi:10.1080/01430750.2021.1873853.
- E.F. El-Gazar, W.K. Zahra, H. Hassan, S.I. Rabia, Fractional
modeling for enhancing the thermal performance of conventional
solar still using hybrid nanofluid: energy and exergy analysis,
Desalination, (2021), doi:10.1016/j.desal.2020.114847.
- S.W. Sharshir, P. Guilong, A.H. Elsheikh, E.M.A. Edreis,
A.M. Eltawil, T. Abdelhamid, E.A. Kabeel, J. Zang,
N. Yang, Energy and exergy analysis of solar stills with micro/nanoparticles: a comparative study, Energy Convers. Manage.,
177 (2018) 363–375.
- P. Zanganeh, A.S. Goharrizi, S. Ayatollahi, M. Feilizadeh,
Productivity enhancement of solar stills
by nano-coating of
condensing surface, Desalination, 454 (2019) 1–9.
- L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D.W. Jing,
X.X. Zhang, P.M. Norris, C.N. Markides, O. Mahian,
A review of
recent advances in thermophysical properties at the nanoscale:
from solid state to colloids,
Phys. Rep., 843 (2020) 1–81.
- J. Nadal-Bach, J. Carles Bruno, J. Farnós, M. Rovira, Solar stills
and evaporators for the treatment
of agro-industrial liquid
wastes: a review, Renewable Sustainable Energy Rev., 142 (2021)
110825, doi:10.1016/j.rser.2021.110825.
- A. Rajendra Prasad, R. Sathyamurthy, M. Sudhakar, B. Madhu,
D. Mageshbabu, A. Muthu Manokar,
A.J. Chamkha, Effect of
design parameters on fresh water produced from triangular
basin and conventional basin solar still, Int. J. Photoenergy,
2021 (2021) 6619138, doi: 10.1155/2021/6619138.
- M.F. Zawrah, R.M. Khattab, L.G. Girgis, H. El Daidamony,
R.E. Abdel Aziz, Stability and electrical conductivity of waterbase
Al2O3 nanofluids for different applications, HBRC J.,
12 (2016) 227–234.
- H. Khaoula, M. Mohanraj, Thermodynamic analysis of a heat
pump assisted active solar still, Desal. Water Treat., 154 (2019)
101–110.
- H. Akrout, K. Hidouri, A. Benhmidene, B. Chaouachi,
Energetic, exergetic and entropic study in a simple and
hybrid solar distiller, Int. J. Ambient Energy, (2020) 1745274,
doi: 10.1080/01430750.2020.1745274.
- R. Dhivagar, M. Mohanraj, K. Hidouri, Y. Belyayev, Energy,
exergy, economic and enviro-economic (4E) analysis of gravel
coarse aggregate sensible heat storage-assisted single-slope
solar still, J. Therm. Anal. Calorim., 145 (2020) 1–22, doi: 10.1007/
s10973-020-09766.
- J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed.,
Vol. 1., Dover Publications, Inc., Mineola (NY), 1954.
- B. Madhu, E. Balasubramanian, P.K. Nagarajana, R. Sathyamurthy,
A.E. Kabeel, T. Arunkumar, D. Mageshbabu, Improving
the yield of fresh water from conventional and stepped solar
still with different nanofluids, Desal. Water Treat., 100 (2017)
243–249.
- R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous
two-component systems, Ind. Eng. Chem. Fundam.,
1 (1962) 187–191.
- A. Zeeshan, R. Ellahi, F. Mabood, F. Hussain, Numerical study
on bi-phase coupled stress fluid in the presence of Hafnium
and metallic nanoparticles over an inclined plane, Int. J. Numer.
Methods Heat Fluid Flow, 29 (2019) 2854–2869.
- D.A.G. Bruggeman, Berechnung verschiedener physikalischer
Konstanten von heterogenen Substanzen.
I. Dielektrizitätskonstanten
und Leitfähigkeiten der Mischkörper
aus isotropen Substanzen, Ann. Phys. (Leipzig), 416 (1935)
636–664.
- W. Chen, C. Zou, X. Li, H. Liang, Application of recoverable
carbon nanotube nanofluids in solar desalination system: an
experimental investigation, Desalination, 451 (2019) 92–101.
- E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Effect
of nanofluid variable properties on natural convection in
enclosures, Int. J. Therm. Sci., 49 (2010) 479–491.
- R.S. Kumar, T. Sharma, Stability and rheological properties
of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2
nanocomposites for oilfield applications., Colloids Surf., A,
539 (2018) 171–183.
- A. Einstein, Investigations on the Theory of The Brownian
Movement, Dover, New York, 1956.
- G. Peng, H. Ding, S.W. Sharshir, X. Li, H. Liu, D. Ma, L. Wu,
J. Zang, H. Liu, W. Yu, H. Xie, N. Yang,
Low-cost high-efficiency
solar steam generator by combining thin film evaporation and
heat localization:
Both experimental and theoretical study,
Appl. Therm. Eng., 143 (2018) 1079–1084.
- A.H. Elsheikh, S.W. Sharshir, M.K. Ahmed Ali, J. Shaibo,
E.M.A. Edreis, T. Abdelhamid, C. Du, Z. Haiou, Thin film
technology for solar steam generation: a new dawn, Sol. Energy,
177 (2019) 561–575.
- K. Hidouri, D.R. Mishra, A. Benhmidene, B.Chouachi,
Experimental and theoretical evaluation of a hybrid solar still
integrated with an air compressor using ANN, Desal. Water
Treat., 88 (2017) 52–59.
- R. Dhivagar, M. Mohanraj, K. Hidouri, M. Midhun, CFD modeling
of a gravel coarse aggregate sensible heat storage assisted
single slope solar still, Desal. Water Treat., 210 (2021) 54–69.
- K. Hidouri, R. Ben Slama, S. Gabsi, Hybrid solar still by heat
pump compression, Desalination, 250 (2010) 444–449.
- S.W. Sharshir, M.O.A. El-Samadony, G. Peng, N. Yang,
F.A. Essa, M.H. Hamed, A.E. Kabeel, Performance enhancement
of wick solar still using rejected water from humidificationdehumidification
unit and film cooling, Appl. Therm. Eng.,
108 (2016) 1268–1278.
- H. Khaoula, B.H. Ali, C. Bechir, R. Sathyamurthy, Comparative
study for evaluation of mass flow rate for simple solar still
and active with heat pump, J. Water Environ. Nanotechnol.,
2 (2017) 157–165.
- A.H. Elsheikh, S.W. Sharshir, M.E. Mostafa, F.A. Essa,
M.K. Ahmed Ali, Applications of nanofluids in solar energy: a
review of recent advances, Renewable Sustainable Energy Rev.,
82 (2018) 3483–3502.
- K. Hidouri, S. Gabsi, Correlation for Lewis number for
evaluation of mass flow rate for simple/hybrid solar still,
Desal. Water Treat., 57 (2015) 1–8.
- K. Hidouri, D.R. Mishra, Experimental evaluation of influence
of air injection rate on a novel single slope solar still integrated
with an air compressor, Global J. Res. Eng.: A Mech. Mech. Eng.,
17 (2017).
- S. Rashidi, M. Bovand, N. Rahbar, J.A. Esfahani, Steps
optimization and productivity enhancement in a nanofluid
cascade solar still, Renewable Energy, 118 (2018) 536–545.
- A. Iqbal, M.S. Mohamed, E.T. Sayed, K. Elsaid, M.A. Abdelkareem,
H. Alawadhi, A.G. Olabi, Evaluation of the nanofluid-assisted
desalination through solar stills in the last decade,
J. Environ. Manage., 277 (2021) 111415, doi: 10.1016/j.jenvman.
2020.111415.
- S.W. Sharshir, M.R. Elkadeem, A. Meng, Performance
enhancement of pyramid solar distiller using nanofluid
integrated with v-corrugated absorber and wick: an experimental
study. Appl. Therm. Eng., 168 (2020) 114848, doi: 10.1016/
j.applthermaleng.2019.114848.
- A.K.R. Singh, H.K. Singh, Performance evaluation of solar
still with and without nanofluid, Int. J. Sci. Eng. Technol.,
3 (2015) 1093–1101.
- A.K. Singh, D.B. Singh, V.K. Dwivedi, G.N. Tiwari, A. Gupta,
Water purification using solar still with/without nano-fluid:
a review, Mater. Today:. Proc., 21 (2020) 1700–1706.
- S. Rashidi, S. Akar, M. Bovand, R. Ellahi, Volume of fluid
model to simulate the nanofluid flow and entropy generation
in a single slope solar still, Renewable Energy, 115 (2018)
400–410.