References

  1. R.P. Arani, R. Sathyamurthy, A. Chamkha, A.E. Kabeel, M. Deverajan, K. Kamalakannan, M. Balasubramanian, A.M. Manokar, F. Essa, A. Saravanan, Effect of fins and silicon dioxide nanoparticle black paint on the absorber plate for augmenting yield from tubular solar still, Environ. Sci. Pollut. Res. Int., 28 (2021) 35102–35112.
  2. H. Panchal, H. Nurdiyanto, K.K. Sadasivuni, S.S. Hishan, F.A. Essa, M. Khalid, S. Dharaskar, S. Shanmugan, Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber, Case Stud. Therm. Eng., 25 (2021) 100905, doi: 10.1016/j.csite.2021.100905.
  3. F.A. Essa, Z.M. Omara, A.S. Abdullah, S. Shanmugan, H. Panchal, A.E. Kabeel, R. Sathyamurthy, W.H. Alawee, A. Muthu Manokar, A.H. Elsheikh, Wall-suspended trays inside stepped distiller with Al2O3/paraffin wax mixture and vapor suction: experimental implementation, J. Energy Storage, 32 (2020) 102008, doi:10.1016/j.est.2020.102008.
  4. A.E. Kabeel, R. Sathyamurthy, A. Muthu Manokar, S.W. Sharshir, F.A. Essa, A.H. Elshiekh, Experimental study on tubular solar still using graphene oxide nanoparticles in phase change material (NPCM’s) for fresh water production, J. Energy Storage, 28 (2020) 101204, doi: 10.1016/j.est.2020.101204.
  5. F.A. Essa, A.S. Abdullah, Z.M. Omara, Rotating discs solar still: new mechanism of desalination, J. Cleaner Prod., 275 (2020) 123200, doi: 10.1016/j.jclepro.2020.123200.
  6. Z.M. Omara, A.E. Kabeel, A.S. Abdullah, F.A. Essa., Experimental investigation of corrugated absorber solar still with wick and reflectors, Desalination, 381 (2016) 111–116.
  7. A.S. Abdullah, F.A. Essa, Z.M. Omara, Y. Rashid, L. Hadj- Taieb, G.B. Abdelaziz, A.E. Kabeel, Rotating-drum solar still with enhanced evaporation and condensation techniques: comprehensive study, Energy Convers. Manage., 199 (2019) 112024, doi: 10.1016/j.enconman.2019.112024.
  8. S. Shanmugan, F.A. Essa, S. Gorjianc, A.E. Kabeel, R. Sathyamurthy, A. Muthu Manokar, Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention, J. Energy Storage, 30 (2020) 101522, doi: 10.1016/j.est.2020.101522.
  9. R. Parikh, U. Patdiwala, S. Parikh, H. Panchal, K. K. Sadasivuni, Performance enhancement using TiO2 nanoparticles in solar still at variable water depth, Int. J. Ambient Energy, (2021), doi:10.1080/01430750.2021.1873853.
  10. E.F. El-Gazar, W.K. Zahra, H. Hassan, S.I. Rabia, Fractional modeling for enhancing the thermal performance of conventional solar still using hybrid nanofluid: energy and exergy analysis, Desalination, (2021), doi:10.1016/j.desal.2020.114847.
  11. S.W. Sharshir, P. Guilong, A.H. Elsheikh, E.M.A. Edreis, A.M. Eltawil, T. Abdelhamid, E.A. Kabeel, J. Zang, N. Yang, Energy and exergy analysis of solar stills with micro/nanoparticles: a comparative study, Energy Convers. Manage., 177 (2018) 363–375.
  12. P. Zanganeh, A.S. Goharrizi, S. Ayatollahi, M. Feilizadeh, Productivity enhancement of solar stills
    by nano-coating of condensing surface, Desalination, 454 (2019) 1–9.
  13. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D.W. Jing, X.X. Zhang, P.M. Norris, C.N. Markides, O. Mahian,
    A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids,
    Phys. Rep., 843 (2020) 1–81.
  14. J. Nadal-Bach, J. Carles Bruno, J. Farnós, M. Rovira, Solar stills and evaporators for the treatment
    of agro-industrial liquid wastes: a review, Renewable Sustainable Energy Rev., 142 (2021) 110825, doi:10.1016/j.rser.2021.110825.
  15. A. Rajendra Prasad, R. Sathyamurthy, M. Sudhakar, B. Madhu, D. Mageshbabu, A. Muthu Manokar,
    A.J. Chamkha, Effect of design parameters on fresh water produced from triangular basin and conventional basin solar still, Int. J. Photoenergy, 2021 (2021) 6619138, doi: 10.1155/2021/6619138.
  16. M.F. Zawrah, R.M. Khattab, L.G. Girgis, H. El Daidamony, R.E. Abdel Aziz, Stability and electrical conductivity of waterbase Al2O3 nanofluids for different applications, HBRC J., 12 (2016) 227–234.
  17. H. Khaoula, M. Mohanraj, Thermodynamic analysis of a heat pump assisted active solar still, Desal. Water Treat., 154 (2019) 101–110.
  18. H. Akrout, K. Hidouri, A. Benhmidene, B. Chaouachi, Energetic, exergetic and entropic study in a simple and hybrid solar distiller, Int. J. Ambient Energy, (2020) 1745274, doi: 10.1080/01430750.2020.1745274.
  19. R. Dhivagar, M. Mohanraj, K. Hidouri, Y. Belyayev, Energy, exergy, economic and enviro-economic (4E) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still, J. Therm. Anal. Calorim., 145 (2020) 1–22, doi: 10.1007/ s10973-020-09766.
  20. J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., Vol. 1., Dover Publications, Inc., Mineola (NY), 1954.
  21. B. Madhu, E. Balasubramanian, P.K. Nagarajana, R. Sathyamurthy, A.E. Kabeel, T. Arunkumar, D. Mageshbabu, Improving the yield of fresh water from conventional and stepped solar still with different nanofluids, Desal. Water Treat., 100 (2017) 243–249.
  22. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., 1 (1962) 187–191.
  23. A. Zeeshan, R. Ellahi, F. Mabood, F. Hussain, Numerical study on bi-phase coupled stress fluid in the presence of Hafnium and metallic nanoparticles over an inclined plane, Int. J. Numer. Methods Heat Fluid Flow, 29 (2019) 2854–2869.
  24. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen.
    I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. (Leipzig), 416 (1935) 636–664.
  25. W. Chen, C. Zou, X. Li, H. Liang, Application of recoverable carbon nanotube nanofluids in solar desalination system: an experimental investigation, Desalination, 451 (2019) 92–101.
  26. E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures, Int. J. Therm. Sci., 49 (2010) 479–491.
  27. R.S. Kumar, T. Sharma, Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications., Colloids Surf., A, 539 (2018) 171–183.
  28. A. Einstein, Investigations on the Theory of The Brownian Movement, Dover, New York, 1956.
  29. G. Peng, H. Ding, S.W. Sharshir, X. Li, H. Liu, D. Ma, L. Wu, J. Zang, H. Liu, W. Yu, H. Xie, N. Yang,
    Low-cost high-efficiency solar steam generator by combining thin film evaporation and heat localization:
    Both experimental and theoretical study, Appl. Therm. Eng., 143 (2018) 1079–1084.
  30. A.H. Elsheikh, S.W. Sharshir, M.K. Ahmed Ali, J. Shaibo, E.M.A. Edreis, T. Abdelhamid, C. Du, Z. Haiou, Thin film technology for solar steam generation: a new dawn, Sol. Energy, 177 (2019) 561–575.
  31. K. Hidouri, D.R. Mishra, A. Benhmidene, B.Chouachi, Experimental and theoretical evaluation of a hybrid solar still integrated with an air compressor using ANN, Desal. Water Treat., 88 (2017) 52–59.
  32. R. Dhivagar, M. Mohanraj, K. Hidouri, M. Midhun, CFD modeling of a gravel coarse aggregate sensible heat storage assisted single slope solar still, Desal. Water Treat., 210 (2021) 54–69.
  33. K. Hidouri, R. Ben Slama, S. Gabsi, Hybrid solar still by heat pump compression, Desalination, 250 (2010) 444–449.
  34. S.W. Sharshir, M.O.A. El-Samadony, G. Peng, N. Yang, F.A. Essa, M.H. Hamed, A.E. Kabeel, Performance enhancement of wick solar still using rejected water from humidificationdehumidification unit and film cooling, Appl. Therm. Eng., 108 (2016) 1268–1278.
  35. H. Khaoula, B.H. Ali, C. Bechir, R. Sathyamurthy, Comparative study for evaluation of mass flow rate for simple solar still and active with heat pump, J. Water Environ. Nanotechnol., 2 (2017) 157–165.
  36. A.H. Elsheikh, S.W. Sharshir, M.E. Mostafa, F.A. Essa, M.K. Ahmed Ali, Applications of nanofluids in solar energy: a review of recent advances, Renewable Sustainable Energy Rev., 82 (2018) 3483–3502.
  37. K. Hidouri, S. Gabsi, Correlation for Lewis number for evaluation of mass flow rate for simple/hybrid solar still, Desal. Water Treat., 57 (2015) 1–8.
  38. K. Hidouri, D.R. Mishra, Experimental evaluation of influence of air injection rate on a novel single slope solar still integrated with an air compressor, Global J. Res. Eng.: A Mech. Mech. Eng., 17 (2017).
  39. S. Rashidi, M. Bovand, N. Rahbar, J.A. Esfahani, Steps optimization and productivity enhancement in a nanofluid cascade solar still, Renewable Energy, 118 (2018) 536–545.
  40. A. Iqbal, M.S. Mohamed, E.T. Sayed, K. Elsaid, M.A. Abdelkareem, H. Alawadhi, A.G. Olabi, Evaluation of the nanofluid-assisted desalination through solar stills in the last decade, J. Environ. Manage., 277 (2021) 111415, doi: 10.1016/j.jenvman. 2020.111415.
  41. S.W. Sharshir, M.R. Elkadeem, A. Meng, Performance enhancement of pyramid solar distiller using nanofluid integrated with v-corrugated absorber and wick: an experimental study. Appl. Therm. Eng., 168 (2020) 114848, doi: 10.1016/ j.applthermaleng.2019.114848.
  42. A.K.R. Singh, H.K. Singh, Performance evaluation of solar still with and without nanofluid, Int. J. Sci. Eng. Technol., 3 (2015) 1093–1101.
  43. A.K. Singh, D.B. Singh, V.K. Dwivedi, G.N. Tiwari, A. Gupta, Water purification using solar still with/without nano-fluid: a review, Mater. Today:. Proc., 21 (2020) 1700–1706.
  44. S. Rashidi, S. Akar, M. Bovand, R. Ellahi, Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still, Renewable Energy, 115 (2018) 400–410.