References

  1. H. Ettouney, Design of single-effect mechanical vapor compression, Desalination, 190 (2006) 1–15.
  2. N. Ghaffour, T.M. Missimer, G.L. Amy, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309 (2013) 197–207.
  3. R. Balan, J. Chandrasekaran, S. Shanmugan, B. Janarthanan, S. Kumar, Review on passive solar distillation, Desal. Water Treat., 28 (2011) 217–238.
  4. I.S. Al-Mutaz, Features of multi-effect evaporation desalination plants, Desal. Water Treat., 54 (2015) 3227–3235.
  5. D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation, Desalination, 366 (2015) 59–70.
  6. Md. Irfan Ali, Bijo Joseph, R. Karthikeyan, R. Yuvaraj, Performance investigation of solar still integrated to solar pond, Bonfring Int. J. Power Syst. Integr. Circuits, 2 (2012) 8–14.
  7. I. Al-Hayeka, O.O. Badran, The effect of using different designs of solar stills on water distillation, Desalination, 169 (2004) 121–127.
  8. H.E.S. Fath, High performance of a simple design, two effects, solar distillation unit, Energy Convers. Manage., 38 (1997) 1895–1905.
  9. A.M. Tayeb, Performance study of some designs of solar stills, Energy Convers. Manage., 33 (1992) 889–898.
  10. O.O. Badran, Experimental study of the enhancement parameters on a single slope solar still productivity, Desalination, 209 (2007) 136–143.
  11. A.E. Kabeel, A.M. Hamed, S.A. El-Agouz, Cost analysis of different solar still configurations, Energy, 35 (2010) 2901–2908.
  12. M. El Hadi Attia, A.E. Kabeel, M. Abdelgaied, W.M. El-Maghlany, Z. Driss, Enhancement of the performance of hemispherical distiller via phosphate pellets as energy storage medium, Environ. Sci. Pollut. Res., 28 (2021) 32386–32395.
  13. T. Arunkumar, R. Jayaprakash, D. Denkenberger, A. Ahsan, M.S. Okundamiya, S. Kumar, H. Tanaka, H.Ş. Aybar, An experimental study on a hemispherical solar still, Desalination, 286 (2012) 342–348.
  14. H.E.S. Fath, M. El-Samanoudy, K. Fahmy, A. Hassabou, Thermal-economic analysis and comparison between pyramidshaped and single-slope solar still configurations, Desalination, 159 (203) 69–79.
  15. M.A. Hamdan, A.M. Musa, B.A. Jubran, Performance of solar still under Jordanian climate, Energy Convers. Manage., 40 (1999) 495–503.
  16. A.A. El-Sebaii, Effect of wind speed on some designs of solar stills, Energy Convers. Manage., 41 (2000) 523–538.
  17. A.A. Al-Karaghouli, W.E. Alnaser, Experimental comparative study of the performances of single and double basin solarstills, Appl. Energy, 77 (2004) 317–325.
  18. R.T. Venkataraman, T. Elango, K. Kalidasa Murugavel, Comparative study of double basin and single basin solar stills, Desalination, 309 (2013) 27–31.
  19. H.N. Panchal, Enhancement of distillate output of double basin solar still with vacuum tubes, J. King Saud Univ. Eng. Sci., 27 (2015) 170–175.
  20. A.A. Al-Karaghouli, W.E. Alnaser, Performances of single and double basin solar-stills, Appl. Energy, 78 (2004) 347–354.
  21. K.K. Murugavel, K. Srithar, Performance study on basin type double slope solar still with different wick materials and minimum mass of water, Renewable Energy, 36 (2011) 612–620.
  22. A.A. El-Sebaii, Thermal performance of a triple-basin solar still, Desalination, 174 (2005) 23–37.
  23. S. Varun Raj, A. Muthu Manokar, Design and analysis of solar still, Mater. Today:. Proc., 4 (2017) 9179–9185.
  24. Y. Yamaguchi, H. Sato, Development of Small-Scale Multi-Effect Solar Still, Proceedings of the ASME 2003 International Solar Energy Conference (ISEC’03), Kohala Coast, Hawaii, USA, 2003, pp. 167–173.
  25. P. Hunkyun, Low-Cost Multi-Effect Solar Still: Alternative Appropriate Technology for Personal Desalination, T. Yonar, Ed., Desalination, IntechOpen, doi: 10.5772/intechopen.68365. Available at: https://www.intechopen.com/chapters/55122
  26. S. Suneja, G.N. Tiwari, Effect of water depth on the performance of an inverted absorber double basin solar still, Desalination, 311 (2013) 198–205.
  27. S.A. Abdul-Wahab, Y.Y. Al-Hatmi, Study of the performance of the inverted solar still integrated with a refrigeration cycle, Procedia Eng., 33 (2012) 424–434.
  28. S. Suneja, G.N. Tiwari, Optimization of number of effects for higher yield from an inverted absorber solar still using the Runge-Kutta method, Desalination, 120 (1998) 197–209.
  29. A.E. Kabeel, Z.M. Omara, F.A. Essa, A.S. Abdullah, Solar still with condenser – a detailed review, Renewable Sustainable Energy Rev., 59 (2016) 839–857.
  30. A. Ahsan, T. Fukuhara, Evaporative mass transfer in tubular solar still, J. Hydroscience Hydraul. Eng., Jpn. Soc. Civ. Eng., 26 (2008) 15–25.
  31. G.M. Cappelletti, An experiment with a plastic solar still, Desalination, 142 (2002) 221–227.
  32. M.M. Belhadj, H. Bouguettaia, Y. Marif, M. Zerrouki, Numerical study of a double-slope solar still coupled with capillary film condenser in south Algeria, Energy Convers. Manage., 94 (2015) 245–252.
  33. A. E1-Bahi, D. Inan, A solar still with minimum inclination, coupled to an outside condenser, Desalination, 123 (1999) 79–83.
  34. F.F. Tabrizi, A.Z. Sharak, Experimental study of an integrated basin solar still with a sandy heat reservoir, Desalination, 253 (2010) 195–199.
  35. H. Tanaka, Tilted wick solar still with flat plate bottom reflector, Desalination, 273 (2011) 405–413.
  36. A. Kr. Tiwari, G.N. Tiwari, Effect of the condensing cover’s slope on internal heat and mass transfer in distillation: an indoor simulation, Desalination, 180 (2005) 73–88.
  37. R. Tripathi, G.N. Tiwari, Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 173 (2005) 187–200.
  38. V.K. Dwivedi, G.N. Tiwari, Comparison of internal heat transfer coefficients in passive solar stills by different thermal models: an experimental validation, Desalination, 246 (2009) 304–318.
  39. G.N. Tiwari, L. Sahota, Advanced Solar-Distillation System: Basic Principles, Thermal Modeling, and Its Application, Green Energy and Technology, Springer Nature, Singapore Pte. Ltd., 152 Beach Road #21-01/04 Gateway East, Singapore 189721, Singapore, 2017. Available at: https://doi.10.1007/ 978-981-10-4672-8.
  40. R. Gopal Singh, G.N. Tiwari, Simulation performance of single slope solar still by using iteration method for convective heat transfer coefficient, Groundwater Sustainable Dev., 10 (2019) 100287, doi:10.1016/j.gsd.2019.100287.
  41. T. Arunkumar, K. Vinothkumar, A. Ahsan, R. Jayaprakash, S. Kumar, Experimental study on various solar still designs, 2012 (2012) 569381, doi: 10.5402/2012/569381.
  42. A. Alkaisia, R. Mossad, A. Sharifian-Barforoush, A review of the water desalination systems integrated with renewable energy, Energy Procedia, 110 (2017) 268–274.
  43. A. Kaya, M. Evren Tok, M. Koc, A levelized cost analysis for solar-energy-powered sea water desalination in The Emirate of Abu Dhabi, Sustainability, 11 (2019) 1691, doi: 10.3390/ su11061691.
  44. J.T. Mahdi, B.E. Smith, A.O. Sharif, An experimental wicktype solar still system: design and construction, Desalination, 267 (2011) 233–238.
  45. M. Chandrashekar, Y. Avadhesh, Water desalination system using solar heat: a review, Renewable Sustainable Energy Rev., 67 (2017) 1308–1330.
  46. P.I. Cooper, The maximum efficiency of single-effect solar stills, Sol. Energy, 15 (1973) 215–217.
  47. P. Prakash, V. Velmurugan, Parameters influencing the productivity of solar stills – a review, Renewable Sustainable Energy Rev., 49 (2015) 585–609.
  48. A. Kianifar, S. Zeinali Heris, O. Mahian, Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases, Energy, 38 (2012) 31–36.
  49. S. Kumar, G.N. Tiwari, Life cycle cost analysis of single slope hybrid (PV/T) active solar still, Appl. Energy, 86 (2009) 1995–2004.
  50. B.T. Nguyen, Factors Affecting the Yield of Solar Distillation Systems and Measures to Improve Productivities, M. Eyvaz, E. Yüksel, Eds., Desalination and Water Treatment, IntechOpen, doi: 10.5772/intechopen.75593. Available at: https://www. intechopen.com/chapters/61068
  51. A.F. Muftah, M.A. Alghoul, A. Fudholi, M.M. Abdul-Majeed, K. Sopian, Factors affecting basin type solar still productivity: a detailed review, Renewable Sustainable Energy Rev., 32 (2014) 430–447.
  52. K.M. Zaheen, I. Nawaz, G.N. Tiwari, Effect of wind velocity on active and passive solar still, Int. J. Curr. Res., 8 (2016) 28398–28402.
  53. H. Mahmood Ahmed, K.A. Alfaylakawi, An Experimental Study on the Effect of Wind Speed and Water Sprinklers on Simple Solar Still Productivity, Conference: NuRER 2012 – III. International Conference on Nuclear & Renewable Energy Resources, İstanbul, Turkey, 20–23 May 2012.
  54. H. Manchanda, M. Kumar, A comprehensive decade review and analysis on designs and performance parameters of passive solar still, Renewable Energy, 2 (2015) 17, doi: 10.1186/ s40807-015-0019-8.
  55. M. Gholizadeh, A. Farzi, Performance improvement of the single slope solar still using sand, J. Sol. Energy, 5 (2020) 560–567.
  56. A. Fazeli, A. Naseri, Mathematical modeling of solar still for desalination of seawater, J. Sol. Energy, 3 (2018) 49–55.
  57. D. Kumar, A. Layek, A. Kumar, Performance enhancement of single slope solar still integrated with flat plate collector for different basin water depth, AIP Conf. Proc., 2273 (2020) 050007, doi: 10.1063/5.0024247.
  58. A.A. El-Sebaii, E. El-Bialy, Advanced designs of solar desalination systems: a review, Renewable Sustainable Energy Rev., 49 (2015) 1198–1212.
  59. J.H. Lienhard V, M.A. Antar, A. Bilton, J. Blanco, G. Zaragoza, Chapter 9 – Solar Desalination, In: Annual Review of Heat Transfer, Vol. 15, Begell House, Inc., New York, 2012, pp. 277– 347. ISSN: 1049–0787;
    ISBN: 1–978–56700–311–6.
  60. Y.F. Nassar, S.A. Yousif, A.A. Salem, The second generation of the solar desalination systems, Desalination, 209 (2007) 177–181, (The Ninth Arab International Conference on Solar Energy (AICSE-9), Kingdom of Bahrain).
  61. H.N. Panchal, S. Patel, Effect of various parameters on augmentation of distillate output of solar still: a review, Technol. Econ. Smart Grids Sustainable Energy, 1 (2016), doi: 10.1007/s40866-016-0005-2.
  62. D.G. Harris Samuel, P.K. Nagarajan, R. Sathyamurthy, S.A. El-Agouz, E. Kannan, Improving the yield of fresh water in conventional solar still using low-cost energy storage material, Energy Convers. Manage., 112 (2016) 125–134.
  63. S. Jahangiri Mamouri, H. Gholami Derami, M. Ghiasi, M.B. Shafii, Z. Shiee, Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still, Energy, 75 (2014) 501–507.
  64. D. Dsilva Winfred Rufuss, S. Sivakumar, Enhancing the performance by increasing the productivity of water in solar desalination system with roof heating, Int. J. Adv. Technol. Eng. Res., 4 (2014) 41–45.
  65. Watercone, 2001. Available at: http://www.watercone.com
  66. P.U. Suneesh, R. Jayaprakash, T. Arunkumar, D. Denkenberger, Effect of air flow on “V” type solar still with cotton gauze cooling, Desalination, 337 (2014) 1–5.
  67. C.M.A. Yadav, Low-cost solar water purifier for rural households, Renewable Sustainable Energy Rev., 67 (2017) 1308–1330.
  68. Manual of Low-cost Solar Water Purifier for Rural Households. Available at: http://www.nariphaltan.org/swpmanual.pdf
  69. O.O. Badran, M.M. Abu-Khader, Evaluating thermal performance of a single slope solar still, Heat Mass Transfer, 43 (2007) 985–995.
  70. K. Kalidasa Murugavel, Kn. K.S.K. Chockalingam, K. Srithar, Modeling and verification of double slope single basin solar still using laboratory and actual solar conditions, Jordan J. Mech. Ind. Eng., 3 (2009) 228–235.
  71. M.R. Rajamanickam, A. Ragupathy, Influence of water depth on internal heat and mass transfer in a double slope solar still, Energy Procedia, 14 (2012) 1701–1708.
  72. R. Tripathi, G.N. Tiwari, Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction, Sol. Energy, 80 (2006) 956–967.
  73. M.K. Phadatare, S.K. Verma, Influence of water depth on internal heat and mass transfer in a plastic solar still, Desalination, 217 (2007) 267–275.
  74. R. Dev, S.A. Abdul-Wahab, G.N. Tiwari, Performance study of the inverted absorber solar still with water depth and total dissolved solid, Appl. Energy, 88 (2011) 252–264.
  75. A.A. El Bassouni, Enhanced solar desalination unit: modified cascaded still, Sol. Wind Technol., 3 (1986) 189–194.
  76. J. Lindblom, Solar Thermal Technologies for Seawater Desalination: State of the Art, Renewable Energy Systems, Luleå University of Technology, Sweden, 2004.
  77. K. Kalidasa Murugavel, Kn.K.S.K. Chockalingam, K. Srithar, An experimental study on single basin double slope simulation solar still with thin layer of water in the basin, Desalination, 220 (2008) 687–693.
  78. A.A. El-Sebaii, On effect of wind speed on passive solar still performance based on inner/outer surface temperatures of the glass cover, Energy, 36 (2011) 4943–4949.
  79. A.A. El-Sebaii, Effect of wind speed on active and passive solar stills, Energy Convers. Manage., 45 (2004) 1187–1204.