References
- M. Grote, N. Mazurek, C. Gräbsch, J. Zeilinger, S. Le Floch,
D. Wahrendorf, T. Höfer, Dry bulk cargo shipping. An
overlooked threat to the marine environment, Mar. Pollut. Bull.,
110 (2016) 511–519.
- T.R. Walker, O. Adebambo, M.C. Feijoo, E. Elhaimer, T. Hossain,
S.J. Edwards, C.E. Morrison, J. Romo, N. Sharma, S. Taylor,
S. Zomorodi, Environmental Effects of Marine Transportation,
World Seas: An Environmental Evaluation, 2nd ed., Volume
III: Ecological Issues and Environmental Impacts, 2nd ed.,
Elsevier Ltd., 2019,
pp. 505–530.
- M.F. Milazzo, G. Ancione, R. Lisi, Emissions of volatile organic
compounds during the ship-loading of petroleum products:
dispersion modelling and environmental concerns, J. Environ.
Manage., 204 (2017) 637–650.
- E. Lakshmi, M. Priya, V. Sivanandan Achari, An overview on
the treatment of ballast water in ships, Ocean Coastal Manage.,
199 (2021) 105296, doi: 10.1016/j.ocecoaman.2020.105296.
- A.K. Balaji, H. Amarnath, A.L. Balasubramaniyan, Removal of
oil and grease from wastewater by using natural adsorbent,
Int. J. Appl. Eng. Res., 10 (2018) 7246–7248.
- P. Sasirekha, V. Mutheeswari, S. Sivapackiam, S. Soundharya,
J. Ragheljebamariyal, Treatment of industrial wastewater by
using orange peels and fish scales Ms, Int. J. Sci. Res. Dev.,
1 (2017) 1080–1085.
- J.N. Edokpayi, J.O. Odiyo, O.S. Durowoju, Impact of Wastewater
on Surface Water Quality in Developing Countries: A Case
Study of South Africa, p. 2017, doi: 10.5772/66561.
- M. Eljaiek-Urzola, N. Romero-Sierra, L. Segrera-Cabarcas,
D. Valdelamar-Martinez, E. Quinones-Bolanos, Oil and grease
as a water quality index parameter for the conservation of
marine biota, Water, 4 (2019) 856, doi:10.3390/w11040856.
- A.M.A. Pintor, V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura,
Oil and grease removal from wastewaters: sorption treatment
as an alternative to state-of-the-art technologies, a critical
review, Chem. Eng. J., 297 (2016) 229–255.
- P. Cisterna-Osorio, P.P. Arancibia-Avila, Comparison of
biodegradation of fats and oils by activated sludge on
experimental and real scales, Water, 11 (2019) 1286, doi: 10.3390/
w11061286.
- M.N. Yahyaa, H. Gökçekuş, D.U. Ozsahin, Comparative analysis
of wastewater treatment technologies, Jurnal Kejuruteraan,
32 (2020) 221–230, doi: 10.17576/jkukm-2020-32(2)-06.
- M. Marzec, Reliability of removal of selected pollutants in
different technological solutions of household wastewater
treatment plants, J. Wat. Land Dev., 35 (2017) 141–148.
- T.W. Seow, C.K. Lim, M. Hanif, M. Nor, M. Fahmi, M. Mubarak,
Z. Ibrahim, Review on wastewater treatment technologies,
Int. J. Appl. Environ. Sci., 11 (2016) 111–126.
- Y. Yang, L. Wang, F. Xiang, L. Zhao, Z. Qiao, Activated
sludge microbial community and treatment performance of
wastewater treatment plants in industrial and municipal zones,
Int. J. Environ. Res. Public Health, 17 (2020) 436.
- V.P. Sutar, J.V. Kurhekar, Isolation and characterization
of lipase producing bacteria from restaurant wastewater,
World J. Pharm. Res., 6 (2017) 685–693.
- K. Lawrence, M.H.S. Wang, K.N. Shammas, Biological processes
for water resource protection and water recovery, Environ.
Nat. Res. Eng., 19 (2021) 73–168.
- I.A. Adegoke, O.O. Ademola, Treatment of industrial oily
wastewater by advanced technologies, Appl. Wat. Sci., 11 (2021)
11–98, doi: 10.1007/s13201-021-01430-4.
- C. Jiang, S. Cui, Q. Han, P. Li, Q. Zhang, J. Song, M. Li, Study on
application of activated carbon in water treatment, Earth Environ.
Sci., 237 (2019) 022049, doi: 10.1088/1755-1315/237/2/022049.
- S. Jafarinejad, Activated sludge combined with powdered
activated carbon (PACT process) for the petroleum industry
wastewater treatment: a review, Chem. Int., 3 (2017) 368–377.
- H. Van Limbergen, E. M. Top, W. Verstraete, Bioaugmentation
in activated sludge: current features and future perspectives,
Appl. Microbiol. Biotechnol., 50 (1998) 16–23.
- J. Michalska, A. Piński, J. Źur, A. Mrozik, Selecting bacteria
candidates for the bioaugmentation of activated sludge to
improve the aerobic treatment of landfill leachate, Water,
12 (2020) 140, doi: 10.3390/w12010140.
- X. Zhang, Z. Song, Q. Tang, M. Wu, H. Zhou, L. Liu,
Y. Qu, Performance and microbial community analysis of
bioaugmented activated sludge for nitrogen-containing
organic pollutants removal, J. Environ. Sci., 101 (2021) 373–381.
doi: 10.1016/j.jes.2020.09.002.
- S. Park, S. Oh, Activated sludge-degrading analgesic drug
acetaminophen: acclimation, microbial community dynamics,
degradation characteristics, and bioaugmentation potential,
Water Res., 182 (2020) 115957, doi:10.1016/j.watres.2020.115957.
- X. Yu, J. Shi, A. Khan, H. Yun, P. Zhang, P. Zhang, A. Kakade,
Y. Tian, Y. Pei, Y. Jiang, H. Huang, K. Wu, X. Li. Immobilizedmicrobial
bioaugmentation protects aerobic denitrification from
heavy metal shock in an activated-sludge reactor, Bioresour.
Technol., 307 (2020) 123185, doi: 10.1016/j.biortech.2020.123185.
- R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the
Examination of Water and Wastewater, 23rd ed., American
Public Health Association (APHA), USA, 2015.
- J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning:
A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, New York, 1989.
- F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidam,
J.A. Smith, K. Struhl, Short Protocols in Molecular Biology,
John Willey and Sons Inc., New York, 9 1995, pp. 66–77.
- S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic
local alignment search tool, J. Mol. Biol., 215 (1990) 403–10,
doi: 10.1016/S0022-2836(05)80360-2.
- B.K. Hall, Homology, Introduction, Novartis Foundation
Symposia, John Wiley & Sons, Baffins Lane, Chichester, West
Sussex PO19 1UD, England, 222 1999, pp. 1–4.
- A.G. Ibrahim, H.E. Abd Elsalam, Biodegradation of anionic
surfactants (SDS) by bacteria isolated from wastewater in Taif
Governorate, Ann. Res. Rev. Biol., 26 (2018) 1–13.
- R. Sanket, P. Nafisa, A. Dhruti, Beneficial Microbes in Agro-
Ecology, Academic Press, 2020, pp. 149–167.
- J. Binhui, F. Lili, C. Wan, B. Zhang, L. Fengda, L. Yana, Microbial
flocculant produced by a novel Paenibacillus sp., Strain A9,
using food processing wastewater to replace fermentation
medium and its application for the removal of Pb(II) from
aqueous solution, adsorption science and technology, SAGE J.,
9–10 (2019) 683–697.
- M.B. Sarah, A.C. Rachel, H.O. Renato, R.D. Diana, G. Xiaodong,
K. Jasna, M.C. Laura, H.M. Nicole, W. Martin, Paenibacillus
odorifer, the predominant Paenibacillus species isolated from
milk in the United States, demonstrates genetic and phenotypic
conservation of psychrotolerance but clade-associated
differences in nitrogen metabolic pathways, mSphere, 5 (2020),
doi: 10.1128/mSphere.00739-19.
- L. Bahamdain, F. Fahmy, S. Lari, M. Aly, Characterization of
some Bacillus strains obtained from marine habitats using
different taxonomical methods, Life Sci. J., 12 (2015) 58–63.
- F.A. Bezza, E.M. Chirwa, Biosurfactant from Paenibacillus
dendritiformis and its application in assisting polycyclic
aromatic hydrocarbon (PAH) and motor oil sludge removal
from contaminated soil and sand media, Process Saf. Environ.
Prot., 98 (2015) 354–364, doi: 10.1016/j.psep.2015.09.004.
- B. Sandeep, P. Piyush, B. Bhavya, S. Shivesh, K. Vivek,
D.S. Krishan, Bioremediation of polyaromatic hydrocarbons
(PAHs) using rhizosphere technology, Braz. J. Microbiol.,
46 (2015) 7–21.
- F.A. Bezza, E.M. Chirwa, Pyrene biodegradation enhancement
potential of lipopeptide biosurfactant produced by Paenibacillus
dendritiformis CN5 strain, J. Hazard. Mater., 321 (2017) 218–227,
doi: 10.1016/j.jhazmat.2016.08.035.
- D. Lapidot, R. Dror, E. Vered, O. Mishli, D. Levy, Y. Helman,
Disease protection and growth promotion of potatoes (Solanum
tuberosum L.) by Paenibacillus dendritiformis, Plant Pathol.,
64 (2015) 545–551, doi: 10.1111/ppa.12285.
- Z. Wei, P.A.G. Juan, D. Wafa, P.S. Christopher, Z. Ming,
D.S. Michael, Value-added products derived from waste
activated sludge: a biorefinery perspective, Water, 10 (2018) 545.
- P. Chandra, Enespa, R. Singh, P.K. Arora, Microbial lipases and
their industrial applications: a comprehensive review, Microbiol.
Cell Fact. J., 19 (2020) 169, doi: 10.1186/s12934-020-01428-8.
- D.T. Pedro, S.S. Vitor, T. Rogério, Integrated selection and
identification of bacteria from polluted sites for biodegradation
of lipids, Int. Microbiol. J., 23 (2020) 367–380.
- M. Jessica, H.S.J. Afonso, R.S.O. Carlos, W.R.J. Francisco,
Valorization and Treatment of Oily Wastewater from Agro
Industries using Lipases: An Overview, International
Agribusiness Congress (CIAGRO), 41 (2020) 62, doi: 10.31692/
ICIAGRO.2020.0062.
- J. Keerti, S.P. Anand, P.P. Vishwas, J.S.F. Swaran, Nanotechnology
in wastewater management: a new paradigm towards
wastewater treatment, Molecules, 26 (2021) 1797, doi: 10.3390/
molecules26061797.
- E. Karima, M. Mohammed, L. Omar, B. Saloua, O. Anass,
B. Mohamed, Sequencing batch reactor: inexpensive and
efficient treatment for tannery effluents of Fez City in Morocco,
Desal. Water Treat., 202 (2020) 71–77.
- C.P. Maria, D.C. Diana, J.C.F. Sedolfo, E.A.C. Nancy, R.D.M.
Altamira, Nitrogen and COD removal from tannery wastewater
using biological and physicochemical treatments, The Revista
Facultad de Ingenieria J., 80 (2016) 63–73.
- R. Mashallah, M. Mohsen, M. Mohammadi, Wastewaters
treatment containing phenol and ammonium using aerobic
submerged membrane bioreactor, Chem. Cent. J., 12 (2018) 79.
- M.M. Emara, N.A. Farid, A.G. Eltalawy, Removal efficiency of
COD, BOD, oil and grease and TSS from industrial wastewater
by using electro-coagulation, Al-Azhar Bull. Sci., 30 (2019) 1–8.