References

  1. M. Grote, N. Mazurek, C. Gräbsch, J. Zeilinger, S. Le Floch, D. Wahrendorf, T. Höfer, Dry bulk cargo shipping. An overlooked threat to the marine environment, Mar. Pollut. Bull., 110 (2016) 511–519.
  2. T.R. Walker, O. Adebambo, M.C. Feijoo, E. Elhaimer, T. Hossain, S.J. Edwards, C.E. Morrison, J. Romo, N. Sharma, S. Taylor, S. Zomorodi, Environmental Effects of Marine Transportation, World Seas: An Environmental Evaluation, 2nd ed., Volume III: Ecological Issues and Environmental Impacts, 2nd ed., Elsevier Ltd., 2019,
    pp. 505–530.
  3. M.F. Milazzo, G. Ancione, R. Lisi, Emissions of volatile organic compounds during the ship-loading of petroleum products: dispersion modelling and environmental concerns, J. Environ. Manage., 204 (2017) 637–650.
  4. E. Lakshmi, M. Priya, V. Sivanandan Achari, An overview on the treatment of ballast water in ships, Ocean Coastal Manage., 199 (2021) 105296, doi: 10.1016/j.ocecoaman.2020.105296.
  5. A.K. Balaji, H. Amarnath, A.L. Balasubramaniyan, Removal of oil and grease from wastewater by using natural adsorbent, Int. J. Appl. Eng. Res., 10 (2018) 7246–7248.
  6. P. Sasirekha, V. Mutheeswari, S. Sivapackiam, S. Soundharya, J. Ragheljebamariyal, Treatment of industrial wastewater by using orange peels and fish scales Ms, Int. J. Sci. Res. Dev., 1 (2017) 1080–1085.
  7. J.N. Edokpayi, J.O. Odiyo, O.S. Durowoju, Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa, p. 2017, doi: 10.5772/66561.
  8. M. Eljaiek-Urzola, N. Romero-Sierra, L. Segrera-Cabarcas, D. Valdelamar-Martinez, E. Quinones-Bolanos, Oil and grease as a water quality index parameter for the conservation of marine biota, Water, 4 (2019) 856, doi:10.3390/w11040856.
  9. A.M.A. Pintor, V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies, a critical review, Chem. Eng. J., 297 (2016) 229–255.
  10. P. Cisterna-Osorio, P.P. Arancibia-Avila, Comparison of biodegradation of fats and oils by activated sludge on experimental and real scales, Water, 11 (2019) 1286, doi: 10.3390/ w11061286.
  11. M.N. Yahyaa, H. Gökçekuş, D.U. Ozsahin, Comparative analysis of wastewater treatment technologies, Jurnal Kejuruteraan, 32 (2020) 221–230, doi: 10.17576/jkukm-2020-32(2)-06.
  12. M. Marzec, Reliability of removal of selected pollutants in different technological solutions of household wastewater treatment plants, J. Wat. Land Dev., 35 (2017) 141–148.
  13. T.W. Seow, C.K. Lim, M. Hanif, M. Nor, M. Fahmi, M. Mubarak, Z. Ibrahim, Review on wastewater treatment technologies, Int. J. Appl. Environ. Sci., 11 (2016) 111–126.
  14. Y. Yang, L. Wang, F. Xiang, L. Zhao, Z. Qiao, Activated sludge microbial community and treatment performance of wastewater treatment plants in industrial and municipal zones, Int. J. Environ. Res. Public Health, 17 (2020) 436.
  15. V.P. Sutar, J.V. Kurhekar, Isolation and characterization of lipase producing bacteria from restaurant wastewater, World J. Pharm. Res., 6 (2017) 685–693.
  16. K. Lawrence, M.H.S. Wang, K.N. Shammas, Biological processes for water resource protection and water recovery, Environ. Nat. Res. Eng., 19 (2021) 73–168.
  17. I.A. Adegoke, O.O. Ademola, Treatment of industrial oily wastewater by advanced technologies, Appl. Wat. Sci., 11 (2021) 11–98, doi: 10.1007/s13201-021-01430-4.
  18. C. Jiang, S. Cui, Q. Han, P. Li, Q. Zhang, J. Song, M. Li, Study on application of activated carbon in water treatment, Earth Environ. Sci., 237 (2019) 022049, doi: 10.1088/1755-1315/237/2/022049.
  19. S. Jafarinejad, Activated sludge combined with powdered activated carbon (PACT process) for the petroleum industry wastewater treatment: a review, Chem. Int., 3 (2017) 368–377.
  20. H. Van Limbergen, E. M. Top, W. Verstraete, Bioaugmentation in activated sludge: current features and future perspectives, Appl. Microbiol. Biotechnol., 50 (1998) 16–23.
  21. J. Michalska, A. Piński, J. Źur, A. Mrozik, Selecting bacteria candidates for the bioaugmentation of activated sludge to improve the aerobic treatment of landfill leachate, Water, 12 (2020) 140, doi: 10.3390/w12010140.
  22. X. Zhang, Z. Song, Q. Tang, M. Wu, H. Zhou, L. Liu, Y. Qu, Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal, J. Environ. Sci., 101 (2021) 373–381. doi: 10.1016/j.jes.2020.09.002.
  23. S. Park, S. Oh, Activated sludge-degrading analgesic drug acetaminophen: acclimation, microbial community dynamics, degradation characteristics, and bioaugmentation potential, Water Res., 182 (2020) 115957, doi:10.1016/j.watres.2020.115957.
  24. X. Yu, J. Shi, A. Khan, H. Yun, P. Zhang, P. Zhang, A. Kakade, Y. Tian, Y. Pei, Y. Jiang, H. Huang, K. Wu, X. Li. Immobilizedmicrobial bioaugmentation protects aerobic denitrification from heavy metal shock in an activated-sludge reactor, Bioresour. Technol., 307 (2020) 123185, doi: 10.1016/j.biortech.2020.123185.
  25. R.B. Baird, A.D. Eaton, E.W. Rice, Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association (APHA), USA, 2015.
  26. J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.
  27. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidam, J.A. Smith, K. Struhl, Short Protocols in Molecular Biology, John Willey and Sons Inc., New York, 9 1995, pp. 66–77.
  28. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol., 215 (1990) 403–10, doi: 10.1016/S0022-2836(05)80360-2.
  29. B.K. Hall, Homology, Introduction, Novartis Foundation Symposia, John Wiley & Sons, Baffins Lane, Chichester, West Sussex PO19 1UD, England, 222 1999, pp. 1–4.
  30. A.G. Ibrahim, H.E. Abd Elsalam, Biodegradation of anionic surfactants (SDS) by bacteria isolated from wastewater in Taif Governorate, Ann. Res. Rev. Biol., 26 (2018) 1–13.
  31. R. Sanket, P. Nafisa, A. Dhruti, Beneficial Microbes in Agro- Ecology, Academic Press, 2020, pp. 149–167.
  32. J. Binhui, F. Lili, C. Wan, B. Zhang, L. Fengda, L. Yana, Microbial flocculant produced by a novel Paenibacillus sp., Strain A9, using food processing wastewater to replace fermentation medium and its application for the removal of Pb(II) from aqueous solution, adsorption science and technology, SAGE J., 9–10 (2019) 683–697.
  33. M.B. Sarah, A.C. Rachel, H.O. Renato, R.D. Diana, G. Xiaodong, K. Jasna, M.C. Laura, H.M. Nicole, W. Martin, Paenibacillus odorifer, the predominant Paenibacillus species isolated from milk in the United States, demonstrates genetic and phenotypic conservation of psychrotolerance but clade-associated differences in nitrogen metabolic pathways, mSphere, 5 (2020), doi: 10.1128/mSphere.00739-19.
  34. L. Bahamdain, F. Fahmy, S. Lari, M. Aly, Characterization of some Bacillus strains obtained from marine habitats using different taxonomical methods, Life Sci. J., 12 (2015) 58–63.
  35. F.A. Bezza, E.M. Chirwa, Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media, Process Saf. Environ. Prot., 98 (2015) 354–364, doi: 10.1016/j.psep.2015.09.004.
  36. B. Sandeep, P. Piyush, B. Bhavya, S. Shivesh, K. Vivek, D.S. Krishan, Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology, Braz. J. Microbiol., 46 (2015) 7–21.
  37. F.A. Bezza, E.M. Chirwa, Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain, J. Hazard. Mater., 321 (2017) 218–227, doi: 10.1016/j.jhazmat.2016.08.035.
  38. D. Lapidot, R. Dror, E. Vered, O. Mishli, D. Levy, Y. Helman, Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis, Plant Pathol., 64 (2015) 545–551, doi: 10.1111/ppa.12285.
  39. Z. Wei, P.A.G. Juan, D. Wafa, P.S. Christopher, Z. Ming, D.S. Michael, Value-added products derived from waste activated sludge: a biorefinery perspective, Water, 10 (2018) 545.
  40. P. Chandra, Enespa, R. Singh, P.K. Arora, Microbial lipases and their industrial applications: a comprehensive review, Microbiol. Cell Fact. J., 19 (2020) 169, doi: 10.1186/s12934-020-01428-8.
  41. D.T. Pedro, S.S. Vitor, T. Rogério, Integrated selection and identification of bacteria from polluted sites for biodegradation of lipids, Int. Microbiol. J., 23 (2020) 367–380.
  42. M. Jessica, H.S.J. Afonso, R.S.O. Carlos, W.R.J. Francisco, Valorization and Treatment of Oily Wastewater from Agro Industries using Lipases: An Overview, International Agribusiness Congress (CIAGRO), 41 (2020) 62, doi: 10.31692/ ICIAGRO.2020.0062.
  43. J. Keerti, S.P. Anand, P.P. Vishwas, J.S.F. Swaran, Nanotechnology in wastewater management: a new paradigm towards wastewater treatment, Molecules, 26 (2021) 1797, doi: 10.3390/ molecules26061797.
  44. E. Karima, M. Mohammed, L. Omar, B. Saloua, O. Anass, B. Mohamed, Sequencing batch reactor: inexpensive and efficient treatment for tannery effluents of Fez City in Morocco, Desal. Water Treat., 202 (2020) 71–77.
  45. C.P. Maria, D.C. Diana, J.C.F. Sedolfo, E.A.C. Nancy, R.D.M. Altamira, Nitrogen and COD removal from tannery wastewater using biological and physicochemical treatments, The Revista Facultad de Ingenieria J., 80 (2016) 63–73.
  46. R. Mashallah, M. Mohsen, M. Mohammadi, Wastewaters treatment containing phenol and ammonium using aerobic submerged membrane bioreactor, Chem. Cent. J., 12 (2018) 79.
  47. M.M. Emara, N.A. Farid, A.G. Eltalawy, Removal efficiency of COD, BOD, oil and grease and TSS from industrial wastewater by using electro-coagulation, Al-Azhar Bull. Sci., 30 (2019) 1–8.