References

  1. S. El-Ghzizel, H. Jalté, B. Bachiri, A. Zdeg, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui, Demineralization of underground water by a nanofiltration plant coupled with a photovoltaic and wind energy system, Desal. Water Treat., 130 (2018) 28–36.
  2. F. El Azhar, M. Tahaikt, N. Zouhri, A. Zdeg, M. Hafsi, K. Tahri, H. Bari, M. Taky, M. Elamrani, A. Elmidaoui, Remineralization of reverse osmosis (RO)-desalted water for a Moroccan desalination plant: optimization and cost evaluation of the lime saturator post, Desalination, 300 (2012) 46–50.
  3. F. Elazhar, M. Elazhar, M. Hafsi, M. Taky, A. Elmidaoui, Desalination of brackish water using low pressure nanofiltration membranes: comparison and simulation. J. Chem. Pharm. Res., 10 (2018) 119–125.
  4. M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221 (2008) 174–191.
  5. V. Geraldes, M.D. Afonso, Generalized mass-transfer correction factor for nanofiltration and reverse osmosis, AIChE J., 52 (2006) 3353–3362.
  6. P. Dechadilok, W.M. Deen, Hindrance factors for diffusion and convection in pores, Ind. Eng. Chem. Res., 45 (2006) 6953–6959.
  7. R. Bonner, C. Germishuizen, S. Franzsen, Prediction of nanofiltration rejection performance in brackish water reverse osmosis brine treatment processes, J. Water Process Eng., 32 (2019) 100900. doi: 10.1016/j.jwpe.2019.100900
  8. F. Elazhar, J. Touir, M. Elazhar, S. Belhamidi, N. El Harrak, A. Zdeg, M. Hafsi, Z. Amor, M. Taky, A. Elmidaoui, Technoeconomic comparison of reverse osmosis and nanofiltration in desalination of a Moroccan brackish groundwater, Desal. Water Treat., 55 (2015) 2471–2477.
  9. H. Dach, Comparison of Nanofiltration and Reverse Osmosis Processes for a Selective Desalination of Brackish Water Feeds, Engineering Sciences [Physics]. Université d’Angers, 2008. Available at: https://tel.archives-ouvertes.fr/tel-00433513 (accessed February 17, 2020).
  10. N. El Harrak, F. Elazhar, S. Belhamidi, M. Elazhar, J. Touir, A. Elmidaoui, Comparaison des performances des deux procédés membranaires: la Nanofiltration et de l’Osmose inverse dans le Dessalement des eaux saumâtres (Performances comparison of two membranes processes: nanofiltration and reverse osmosis in brackish water desalination), J. Mater. Environ. Sci., 6 (2015) 383–390.
  11. M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor, F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi,
    A. Elmidaoui, Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations, Desalination, 225 (2008) 209–219.
  12. G. Vaseghi, A. Ghassemi, J. Loya, Characterization of reverse osmosis and nanofiltration membranes: effects of operating conditions and specific ion rejection, Desal. Water Treat., 57 (2016) 23461–23472.
  13. J. Cuhorka, E. Wallace, P. Mikulášek, Removal of micropollutants from water by commercially available nanofiltration membranes, Sci. Total Environ., 720 (2020) 137474. doi: 10.1016/j. scitotenv.2020.137474
  14. F. Labarca, R. Bórquez, Comparative study of nanofiltration and ion exchange for nitrate reduction in the presence of chloride and iron in groundwater, Sci. Total Environ., 723 (2020) 137809. doi:10.1016/j.scitotenv.2020.137809
  15. R. Epsztein, O. Nir, O. Lahav, M. Green, Selective nitrate removal from groundwater using a hybrid nanofiltrationreverse osmosis filtration scheme, Chem. Eng. J., 279 (2015) 372–378.
  16. D. Lin, L. Bai, D. Xu, H. Wang, H. Zhang, G. Li, H. Liang, Nanofiltration scaling influenced by coexisting pollutants considering the interaction between ferric coagulant and natural organic macromolecules, Chem. Eng. J., 413 (2021) 127403. doi: 10.1016/j.cej.2020.127403
  17. E.A. Roehl, D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik, D.W. Phipps, P. Xie, Modeling fouling in a large RO system with artificial neural networks, J. Membr. Sci., 552 (2018) 95–106.
  18. S. El-ghzizel, H. Jalte, H. Zeggar, M. Zait, S. Belhamidi, F. Tiyal, M. Hafsi, M. Taky, A. Elmidaoui, Autopsy of nanofiltration membrane of a decentralized demineralization plant, Membr. Water Treat., 10 (2019) 277–286.
  19. M. Mehdi Amin, E. Taheri, A. Fatehizadeh, M. Rezakazemi, T.M. Aminabhavi, Anaerobic membrane bioreactor for the production of bioH2: electron flow, fouling modeling and kinetic study, Chem. Eng. J., (2021) 130716. doi: 10.1016/j. cej.2021.130716
  20. S.J. Im, N.D. Viet, A. Jang, Real-time monitoring of forward osmosis membrane fouling in wastewater reuse process performed with a deep learning model, Chemosphere, 275 (2021) 130047. doi:10.1016/j.chemosphere.2021.130047
  21. A. Ghorbani, B. Bayati, E. Drioli, F. Macedonio, T. Kikhavani, M. Frappa, Modeling of nanofiltration process using DSPM-DE model for purification of amine solution, Membranes (Basel), 11 (2021) 230, doi:10.3390/membranes11040230.
  22. S.M.J. Zaidi, F. Fadhillah, Z. Khan, A.F. Ismail, Salt and water transport in reverse osmosis thin film composite seawater desalination membranes, Desalination, 368 (2015) 202–213.
  23. L. Pérez, I. Escudero, M.J. Arcos-Martínez, J.M. Benito, Application of the solution-diffusion-film model for the transfer of electrolytes and uncharged compounds in a nanofiltration membrane, J. Ind. Eng. Chem., 47 (2017) 368–374.
  24. A. Yaroshchuk, M.L. Bruening, E. Zholkovskiy, Modelling nanofiltration of electrolyte solutions, Adv. Colloid Interface Sci., 268 (2019) 39–63.
  25. X. Meng, D. Luosang, S. Meng, R. Wang, W. Fan, D. Liang, X. Li, Q. Zhao, L. Yang, The structural and functional properties of polysaccharide foulants in membrane fouling, Chemosphere, 268 (2021) 129364. doi:10.1016/j. chemosphere.2020.129364.
  26. S.K. Mah, C.K. Chuah, W.P. Cathie Lee, S.P. Chai, Ultrafiltration of palm oil-oleic acid-glycerin solutions: fouling mechanism identification, fouling mechanism analysis and membrane characterizations, Sep. Purif. Technol., 98 (2012) 419–431.
  27. M.J. Corbatón-Báguena, M.C. Vincent-Vela, J.M. Gozálvez- Zafrilla, S. Álvarez-Blanco, J. Lora-García, D. Catalán-Martínez, Comparison between artificial neural networks and Hermia’s models to assess ultrafiltration performance, Sep. Purif. Technol., 170 (2016) 434–444.
  28. E.E. Chang, S.Y. Yang, C.P. Huang, C.H. Liang, P.C. Chiang, Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model, Sep. Purif. Technol., 79 (2011) 329–336.
  29. I.A. Khan, Y.S. Lee, J.O. Kim, A comparison of variations in blocking mechanisms of membrane-fouling models for estimating flux during water treatment, Chemosphere, 259 (2020) 127328. doi:10.1016/j.chemosphere.2020.127328.
  30. O. Kedem, A. Katchalsky, Permeability of composite membranes Part 1. – electric current, volume flow and flow of solute through membranes, Trans. Faraday Soc., 59 (1963) 1918–1930.
  31. I. Bejaoui, A. Mnif, B. Hamrouni, Influence of operating conditions on the retention of fluoride from water by nanofiltration, Desal. Water Treat., 29 (2011) 39–46.
  32. A.M. Hidalgo, G. León, M. Gómez, M.D. Murcia, E. Gómez, J.L. Gómez, Application of the Spiegler-Kedem-Kachalsky model to the removal of 4-chlorophenol by different nanofiltration membranes, Desalination, 315 (2013) 70–75.
  33. X.L. Wang, T. Tsuru, S.I. Nakao, S. Kimura, The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, J. Membr. Sci., 135 (1997) 19–32.
  34. S.-I. Nakao, S. Kimura, Models of membrane transport phenomena and their applications for ultrafiltration data, J. Chem. Eng. Jpn., 15 (1982) 200–205.
  35. X.-L. Wang, T. Tsuru, M. Togoh, S. Nakao, S. Kimura, Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Jpn., 28 (1995) 186–192.
  36. P. Vanýsek, Ionic conductivity and diffusion at infinite dilution, CRC Handb. Chem. Phys., 96 (1996) 5–98.
  37. J. Hermia, Constant pressure blocking filtration laws – application to power-law non-Newtonian fluids, Trans. Inst. Chem. Eng. V, 60 (1982) 183–187.
  38. R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, Critical flux concept for microfiltration fouling, J. Membr. Sci., 100 (1995) 259–272.
  39. C. Jarusutthirak, S. Mattaraj, R. Jiraratananon, Influence of inorganic scalants and natural organic matter on nanofiltration membrane fouling, J. Membr. Sci., 287 (2007) 138–145.
  40. A. Charfi, Etude d’un procédé membranaire de traitement des eaux usées: effet des paramètres biotiques et abiotiques sur le colmatage de la membrane, Universite de Carthage, 2014.
  41. WHO, Water, World Health Organization, 2016. Available at: http://www.who.int/topics/water/en/ (accessed November 23, 2018).
  42. A. Elmidaoui, M.A. Menkouchi Sahli, M. Tahaikt, L. Chay, M. Taky, M. Elmghari, M. Hafsi, Selective nitrate removal by coupling electrodialysis and a bioreactor, Desalination, 153 (2003) 389–397.
  43. A. Fatehizadeh, M.M. Amin, M. Sillanpää, N. Hatami, E. Taheri, N. Baghaei, S. Mahajan, Modeling of fluoride rejection from aqueous solution by nanofiltration process: single and binary solution, Desal. Water Treat., 193 (2020) 224–234.
  44. M. Tahaikt, S. El-Ghzizel, N. Essafi, M. Hafsi, M. Taky, A. Elmidaoui, Technical-economic comparison of nanofiltration and reverse osmosis in the reduction of fluoride ions from groundwater: experimental, modeling, and cost estimate, Desal. Water Treat., 216 (2021) 83–95.
  45. N. Zouhri, M. Igouzal, M. Larif, M. Hafsi, M. Taky, A. Elmidaoui, Prediction of salt rejection by nanofiltration and reverse osmosis membraneusing spiegler-kedem model and an optimisation procedure, Desal. Water Treat., 120 (2018) 41–50.
  46. B. Cuartas-Uribe, M.C. Vincent-Vela, S. Álvarez-Blanco, M.I. Alcaina-Miranda, E. Soriano-Costa, Nanofiltration of sweet whey and prediction of lactose retention as a function of permeate flux using the Kedem-Spiegler and Donnan Steric Partioning models, Sep. Purif. Technol., 56 (2007) 38–46.