References
- E.-S. Salama, B.-H. Jeon, M.B. Kurade, S.M. Patil, M. Usman,
X.K. Li, H.W. Lim, Enhanced anaerobic co-digestion of fat,
oil, and grease by calcium addition: boost of biomethane
production and microbial community shift, Bioresour. Technol.,
296 (2020) 122353, doi: 10.1016/j.biortech.2019.122353.
- J. Lorenzo-Llanes, J. Pagés-Díaz, E. Kalogirou, F. Contino,
Development and application in Aspen Plus of a process
simulation model for the anaerobic digestion of vinasses in
UASB reactors: hydrodynamics and biochemical reactions,
J. Environ. Chem. Eng., 8 (2020) 103540, doi: 10.1016/j.
jece.2019.103540.
- M. Mouftahi, N. Tlili, N. Hidouri, P. Bartocci, K. Al bkoor
Alrawashdeh, E. Gul, F. Liberti, F. Fantozzi, Biomethanation
potential (BMP) study of mesophilic anaerobic co-digestion of
abundant bio-wastes in southern regions of Tunisia, Processes,
9 (2021) 48, doi: 10.3390/pr9010048.
- E.K. Tetteh, S. Rathilal, Kinetics and nanoparticle catalytic
enhancement of biogas production from wastewater using a
magnetized biochemical methane potential (Mbmp) system,
Catalysts, 10 (2020) 1–19, doi:10.3390/catal10101200.
- H. Métivier, H. Benbelkacem, V. Chatain, L. Culleton,
N. Dumont, Biogas, In: Handbook on Characterization of
Biomass, Biowaste and Related By-products, A. Nzihou, Ed.,
Springer International Publishing, Springer Nature Switzerland
AG, 2020.
- A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of
energy (biodiesel) and recovery of materials (biochar) from
pyrolysis of urban waste sludge, Rev. Ambient. Agua, 13 (2018),
doi: 10.4136/ambi-agua.2128.
- A. Leidreiter, F. Boselli, 100% énergies renouvelables: renforcer
le développement au Maroc (100% Renewable Energy:
Strengthening Development in Morocco), World Future
Council, 2015.
- C.E. Rodrigues Reis, A.K.F. Carvalho, H.B.S. Bento, H.F. de
Castro, Integration of microbial biodiesel and bioethanol
industries through utilization of vinasse as substrate for
oleaginous fungi, Bioresour. Technol. Rep., 6 (2019) 2–13.
- H. Arslanoğlu, S. Kaya, F. Tümen, Cr(VI) adsorption on low-cost
activated carbon developed from grape marc-vinasse mixture,
Part. Sci. Technol., 38 (2020) 768–781.
- K. Al bkoor Alrawashdeh, E. Gul, Q. Yang, H.P. Yang, P. Bartocci,
F. Fantozzi, Effect of heavy metals in the performance of
anaerobic digestion of olive mill waste, Processes, 8 (2020) 1146,
doi: 10.3390/pr8091146.
- K. Mohammadrez, Z. Khodaparast, Review on recent
developments on pulp and paper mill wastewater treatment,
Ecotoxicol. Environ. Saf., 114 (2015) 326–342.
- P. Bartocci, M. Zampilli, F. Liberti, V. Pistolesi, S. Massoli,
G. Bidini, F. Fantozzi, LCA analysis of food waste co-digestion,
Sci. Total Environ., 709 (2020) 136187, doi: 10.1016/j.
scitotenv.2019.136187.
- C.E. Rodrigues Reis, B. Hu, Vinasse from sugarcane ethanol
production: better treatment or better utilization?, Front.
Energy Res., 5 (2017), doi: 10.3389/fenrg.2017.00007.
- K.C. Wijekoon, C. Visvanathan, A. Abeynayaka, Effect of
organic loading rate on VFA production, organic matter
removal and microbial activity of a two-stage thermophilic
anaerobic membrane bioreactor, Bioresour. Technol., 102 (2011)
5353–5360.
- J.P. Blasius, R.C. Contrera, S.I. Maintinguer, M.C.A. Alves de
Castro, Effects of temperature, proportion and organic loading
rate on the performance of anaerobic digestion of food waste,
Biotechnol. Rep., 27 (2020) e00503, doi: 10.1016/j.btre.2020.
e00503.
- V.G. Barros, R.M. de-Duda, R.A. Oliveira, Biomethane
production from vinasse in UASB reactors inoculated with
granular sludge, Braz. J. Microbiol., 47 (2016) 628–639.
- J. Arreola-Vargas, R. Snell-Castro, N.M. Rojo-Liera, V. González
Álvarez, H.O. Méndez-Acosta, Effect of the organic loading
rate on the performance and microbial populations during the
anaerobic treatment of tequila vinasses in a pilot scale packed
bed reactor, J. Chem. Technol. Biotechnol., 93 (2018) 591–599.
- J.G. Moguel-Castañeda, M. González-Salomón, H. Hernández-
García, E. Morales-Zarate, H. Puebla, E. Hernandez-Martinez,
Effect of organic loading rate on anaerobic digestion of raw
cheese whey: experimental evaluation and mathematical
modeling, Int. J. Chem. React. Eng., 18 (2020) 20200022,
doi: 10.1515/ijcre-2020-0022.
- Loi n° 13-09 relative aux énergiesrenouvelables, promulguée
par Dahir n° 1-10-16 du 26 Safar 1431 (11 février 2010) publiée
au Bulletin officiel n° 5822 du 1er Rabii II 1431 (18 mars 2010).
- APHA, Standard Methods for the Examination of Water and
Wastewater: Distillation Method, American Public Health
Association (APHA), Washington, DC, USA, 2002.
- E.A. Santos, Contribution to the Study of Anaerobic Digestion
of Organic Waste, Doctoral Thesis, Lisboa, 2010.
- M.R. Haider, S. Yousaf, R.N. Malik, C. Visvanathan, Effect
of mixing ratio of food waste and rice husk co-digestion and
substrate to inoculum ratio on biogas production, Bioresour.
Technol., 190 (2015) 451–457.
- I. Syaichurrozi, S. Sarto, W.B. Sediawan, M. Hidayat, Mechanistic
model of electrocoagulation process for treating vinasse waste:
effect of initial pH, J. Environ. Chem. Eng., 8 (2020) 103756,
doi:10.1016/j.jece.2020.103756.
- Y. Li, Y. Chen, J. Wu, Enhancement of methane production in
anaerobic digestion process: a review, Appl. Energy, 240 (2019)
120–137.
- B. Rincón, R. Borja, J.M. González, M.C. Portillo, C. Sáiz-Jiménez,
Influence of organic loading rate and hydraulic retention time
on the performance, stability and microbial communities of
one-stage anaerobic digestion of two-phase olive mill solid
residue, Biochem. Eng. J., 40 (2008) 253–261.
- S. Pouresmaeil, M. Nosrati, S. Ebrahimi, Operating control for
enrichment of hydrogen-producing bacteria from anaerobic
sludge and kinetic analysis for vinasse inhibition, J. Environ.
Chem. Eng., 7 (2019) 103090.
- W.C. Nadaleti, National potential production of methane and
electrical energy from sugarcane vinasse in Brazil: a thermoeconomic
analysis, J. Environ. Chem. Eng., 8 (2019) 103422,
doi: 10.1016/j.jece.2019.103422.
- B. Otieno, S. Apollo, Energy recovery from biomethanation of
vinasse and its potential application in ozonation post-treatment
for removal of biorecalcitrant organic compounds, J. Water
Process Eng., 39 (2020) 101723, doi: 10.1016/j.jwpe.2020.101723.