References

  1. X. Ao, W. Liu, W. Sun, C. Yang, Z. Lu, C. Li, Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process, Chemosphere, 212 (2018) 365–375.
  2. A. Shad, J. Chen, R. Qu, A.A. Dar, M. Bin-Jumah, A.A. Allam, Z. Wang, Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: kinetics, degradation products, and reaction pathways, Chem. Eng. J., 398 (2020) 125357, doi: 10.1016/j.cej.2020.125357.
  3. J. Zhuang, S. Wang, Y. Tan, R. Xiao, J. Chen, X. Wang, L. Jiang, Z. Wang, Degradation of sulfadimethoxine by permanganate in aquatic environment: influence factors, intermediate products and theoretical study, Sci. Total Environ., 671 (2019) 705–713.
  4. Q.F. Han, S. Zhao, X.R. Zhang, X.L. Wang, C. Song, S.G. Wang, Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China, Environ. Int., 138 (2020) 105551, doi: 10.1016/j.envint.2020.105551.
  5. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu, Q. Wei, D. Wei, A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches, J. Hazard. Mater., 387 (2020) 121682, doi: 10.1016/ j.jhazmat.2019.121682.
  6. X. Yi, C. Lin, E.J.L. Ong, M. Wang, Z. Zhou, Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure, Chemosphere, 216 (2019) 213–223.
  7. L.T. Qin, X.R. Pang, H.H. Zeng, Y.P. Liang, L.Y. Mo, D.Q. Wang, J.F. Dai, Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China, Sci. Total Environ., 708 (2020) 134552, doi: 10.1016/j.scitotenv.2019.134552.
  8. D.T. Tan, D. Shuai, Research highlights: antibiotic resistance genes: from wastewater into the environment, Environ. Sci. Water Res. Technol., 1 (2015) 264–267.
  9. A. Pruden, Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance, Environ. Sci. Technol., 48 (2014) 5–14.
  10. K. Hu, S. Sun, Y. Wang, Y. Wang, J. Zhang, X. Zhu, Y. Niu, Preparation and application of Silica Quantum Dots using palygorskite as silicon source, Appl. Clay Sci., 211 (2021) 106132, doi: 10.1016/j.clay.2021.106132.
  11. Z. Ye, K. Shao, H. Huang, X. Yang, Tetracycline antibiotics as precursors of dichloroacetamide and other disinfection byproducts during chlorination and chloramination, Chemosphere, 270 (2021) 128628, doi:10.1016/j.chemosphere.2020.128628.
  12. H. Wang, W. Shi, D. Ma, Y. Shang, Y. Wang, B. Gao, Formation of DBPs during chlorination of antibiotics and control with permanganate/bisulfite pretreatment, Chem. Eng. J., 392 (2019) 123701, doi: 10.1016/j.cej.2019.123701.
  13. M. Wang, D.E. Helbling, A non-target approach to identify disinfection byproducts of structurally similar sulfonamide antibiotics, Water Res., 102 (2016) 241–251.
  14. H. Xiang, Y. Shao, N. Gao, X. Lu, W. Chu, N. An, C. Tan, X. Zheng, Y. Gao, The influence of bromide on the degradation of sulfonamides in UV/free chlorine treatment: degradation mechanism, DBPs formation and toxicity assessment, Chem. Eng. J., 362 (2019) 692–701.
  15. R. Zhang, Y. Yang, C.H. Huang, L. Zhao, P. Sun, Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H2O2 and UV/PDS, Water Res., 103 (2016) 283–292.
  16. R. Pelalak, R. Alizadeh, E. Ghareshabani, Z. Heidari, Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: experimental, modeling, transformation mechanism and DFT study, Sci. Total Environ., 734 (2020) 139446, doi: 10.1016/j.scitotenv.2020.139446.
  17. A. Acosta-Rangel, M. Sanchez-Polo, A.M.S. Polo, J. Rivera- Utrilla, M.S. Berber-Mendoza, Sulfonamides degradation assisted by UV, UV/H2O2 and UV/K2S2O8: efficiency, mechanism and byproducts cytotoxicity, J. Environ. Manage., 225 (2018) 224–231.
  18. S. Tian, C. Zhang, D. Huang, R. Wang, G. Zeng, M. Yan, W. Xiong, C. Zhou, M. Cheng, W. Xue, Y. Yang, W. Wang, Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides, Chem Eng J, 389 (2020) 123423, doi: 10.1016/j.cej.2019.123423.
  19. T. An, H. Yang, G. Li, W. Song, W.J. Cooper, X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010) 288–294.
  20. W. Chu, T. Chu, E. Du, D. Yang, Y. Guo, N. Gao, Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments, Ecotoxicol. Environ. Saf., 124 (2016) 147–154.
  21. J. Chen, D. Rao, H. Dong, B. Sun, B. Shao, G. Cao, X. Guan, The role of active manganese species and free radicals in permanganate/bisulfite process, J. Hazard. Mater., 388 (2020) 121735, doi: 10.1016/j.jhazmat.2019.121735.
  22. G. Wang, W. Shi, D. Ma, B. Gao, Impacts of permanganate/bisulfite pre-oxidation on DBP formation during the post chlorine disinfection of ciprofloxacin-contaminated waters, Sci. Total Environ., 731 (2020) 138755, doi:10.1016/ j.scitotenv.2020.138755.
  23. B. Sun, D. Li, W. Linghu, X. Guan, Degradation of ciprofloxacin by manganese(III) intermediate: insight into the potential application of permanganate/bisulfite process, Chem. Eng. J., 339 (2018) 144–152.
  24. B. Sun, X. Guan, J. Fang, P.G. Tratnyek, Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants: the involvement of Mn(III), Environ. Sci. Technol., 49 (2015) 12414–12421.
  25. Y. Zhu, X. Yang, J. Qiao, X. Zhang, X. Guan, Effects of KMnO4/NaHSO3 pre-oxidation on the formation potential of disinfection by-products during subsequent chlorination, Chem. Eng. J., 372 (2019) 825–835.
  26. B. Sun, D. Rao, H. Dong, X. Guan, Comparing the suitability of sodium hyposulfite, hydroxylamine hydrochloride and sodium sulfite as the quenching agents for permanganate oxidation, RSC Adv., 6 (2016) 13335–13342.
  27. D. Ma, B. Peng, Y. Zhang, B. Gao, Y. Wang, Q. Yue, Q. Li, Influences of dissolved organic matter characteristics on trihalomethanes formation during chlorine disinfection of membrane bioreactor effluents, Bioresour. Technol., 165 (2014) 81–87.
  28. P. Xie, J. Ma, J. Fang, Y. Guan, S. Yue, X. Li, L. Chen, Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation, Environ. Sci. Technol., 47 (2013) 14051–14061.
  29. R.S. Magazinovic, B.C. Nicholson, D.E. Mulcahy, D.E. Davey, Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment, Chemosphere, 57 (2004) 329–335.
  30. D. Ma, B. Gao, D. Hou, Y. Wang, Q. Yue, Q. Li, Evaluation of a submerged membrane bioreactor (SMBR) coupled with chlorine disinfection for municipal wastewater treatment and reuse, Desalination, 313 (2013) 134–139.
  31. Y. Gao, Y. Zhou, S.Y. Pang, J. Jiang, Z. Yang, Y. Shen, Z. Wang, P.X. Wang, L.H. Wang, New Insights into the combination of permanganate and bisulfite as a novel advanced oxidation process: importance of high valent manganese-oxo species and sulfate radical, Environ. Sci. Technol., 53 (2019) 3689–3696.
  32. B. Sun, H. Dong, D. He, D. Rao, X. Guan, Modeling the kinetics of contaminants oxidation and the generation of manganese(III) in the permanganate/bisulfite process, Environ. Sci. Technol., 50 (2016) 1473–1482.
  33. B. Sun, Q. Bao, X. Guan, Critical role of oxygen for rapid degradation of organic contaminants in permanganate/bisulfite process, J. Hazard. Mater., 352 (2018) 157–164.
  34. T. Zeng, C.J. Wilson, W.A. Mitch, Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface, Environ. Sci. Technol., 48 (2014) 5118–5126.
  35. Z. Shi, C. Jin, J. Zhang, L. Zhu, Insight into mechanism of arsanilic acid degradation in permanganate-sulfite system: role of reactive species, Chem. Eng. J., 359 (2019) 1463–1471.
  36. W. Chu, X. Li, T. Bond, N. Gao, X. Bin, Q. Wang, S. Ding, Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: reduction efficiency and integrated toxicity risk, Water Res., 107 (2016) 141–150.