References
- X. Ao, W. Liu, W. Sun, C. Yang, Z. Lu, C. Li, Mechanisms and
toxicity evaluation of the degradation of sulfamethoxazole by
MPUV/PMS process, Chemosphere, 212 (2018) 365–375.
- A. Shad, J. Chen, R. Qu, A.A. Dar, M. Bin-Jumah, A.A. Allam,
Z. Wang, Degradation of sulfadimethoxine in phosphate
buffer solution by UV alone, UV/PMS and UV/H2O2: kinetics,
degradation products, and reaction pathways, Chem. Eng. J.,
398 (2020) 125357, doi: 10.1016/j.cej.2020.125357.
- J. Zhuang, S. Wang, Y. Tan, R. Xiao, J. Chen, X. Wang, L. Jiang,
Z. Wang, Degradation of sulfadimethoxine by permanganate in
aquatic environment: influence factors, intermediate products
and theoretical study, Sci. Total Environ., 671 (2019) 705–713.
- Q.F. Han, S. Zhao, X.R. Zhang, X.L. Wang, C. Song, S.G. Wang,
Distribution, combined pollution and risk assessment of
antibiotics in typical marine aquaculture farms surrounding
the Yellow Sea, North China, Environ. Int., 138 (2020) 105551,
doi: 10.1016/j.envint.2020.105551.
- D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu,
Q. Wei, D. Wei, A critical review on antibiotics and hormones
in swine wastewater: water pollution problems and control
approaches, J. Hazard. Mater., 387 (2020) 121682, doi: 10.1016/
j.jhazmat.2019.121682.
- X. Yi, C. Lin, E.J.L. Ong, M. Wang, Z. Zhou, Occurrence and
distribution of trace levels of antibiotics in surface waters and
soils driven by non-point source pollution and anthropogenic
pressure, Chemosphere, 216 (2019) 213–223.
- L.T. Qin, X.R. Pang, H.H. Zeng, Y.P. Liang, L.Y. Mo, D.Q. Wang,
J.F. Dai, Ecological and human health risk of sulfonamides
in surface water and groundwater of Huixian karst wetland
in Guilin, China, Sci. Total Environ., 708 (2020) 134552,
doi: 10.1016/j.scitotenv.2019.134552.
- D.T. Tan, D. Shuai, Research highlights: antibiotic resistance
genes: from wastewater into the environment, Environ. Sci.
Water Res. Technol., 1 (2015) 264–267.
- A. Pruden, Balancing water sustainability and public health
goals in the face of growing concerns about antibiotic resistance,
Environ. Sci. Technol., 48 (2014) 5–14.
- K. Hu, S. Sun, Y. Wang, Y. Wang, J. Zhang, X. Zhu, Y. Niu,
Preparation and application of Silica Quantum Dots using
palygorskite as silicon source, Appl. Clay Sci., 211 (2021) 106132,
doi: 10.1016/j.clay.2021.106132.
- Z. Ye, K. Shao, H. Huang, X. Yang, Tetracycline antibiotics
as precursors of dichloroacetamide and other disinfection
byproducts during chlorination and chloramination,
Chemosphere, 270 (2021) 128628, doi:10.1016/j.chemosphere.2020.128628.
- H. Wang, W. Shi, D. Ma, Y. Shang, Y. Wang, B. Gao, Formation
of DBPs during chlorination of antibiotics and control with
permanganate/bisulfite pretreatment, Chem. Eng. J., 392 (2019)
123701, doi: 10.1016/j.cej.2019.123701.
- M. Wang, D.E. Helbling, A non-target approach to identify
disinfection byproducts of structurally similar sulfonamide
antibiotics, Water Res., 102 (2016) 241–251.
- H. Xiang, Y. Shao, N. Gao, X. Lu, W. Chu, N. An, C. Tan,
X. Zheng, Y. Gao, The influence of bromide on the degradation
of sulfonamides in UV/free chlorine treatment: degradation
mechanism, DBPs formation and toxicity assessment, Chem.
Eng. J., 362 (2019) 692–701.
- R. Zhang, Y. Yang, C.H. Huang, L. Zhao, P. Sun, Kinetics and
modeling of sulfonamide antibiotic degradation in wastewater
and human urine by UV/H2O2 and UV/PDS, Water Res.,
103 (2016) 283–292.
- R. Pelalak, R. Alizadeh, E. Ghareshabani, Z. Heidari,
Degradation of sulfonamide antibiotics using ozone-based
advanced oxidation process: experimental, modeling,
transformation mechanism and DFT study, Sci. Total Environ.,
734 (2020) 139446, doi: 10.1016/j.scitotenv.2020.139446.
- A. Acosta-Rangel, M. Sanchez-Polo, A.M.S. Polo, J. Rivera-
Utrilla, M.S. Berber-Mendoza, Sulfonamides degradation
assisted by UV, UV/H2O2 and UV/K2S2O8: efficiency, mechanism
and byproducts cytotoxicity, J. Environ. Manage., 225 (2018)
224–231.
- S. Tian, C. Zhang, D. Huang, R. Wang, G. Zeng, M. Yan,
W. Xiong, C. Zhou, M. Cheng, W. Xue, Y. Yang, W. Wang, Recent
progress in sustainable technologies for adsorptive and reactive
removal of sulfonamides, Chem Eng J, 389 (2020) 123423,
doi: 10.1016/j.cej.2019.123423.
- T. An, H. Yang, G. Li, W. Song, W.J. Cooper, X. Nie, Kinetics
and mechanism of advanced oxidation processes (AOPs) in
degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010)
288–294.
- W. Chu, T. Chu, E. Du, D. Yang, Y. Guo, N. Gao, Increased
formation of halomethanes during chlorination of
chloramphenicol in drinking water by UV irradiation, persulfate
oxidation, and combined UV/persulfate pre-treatments,
Ecotoxicol. Environ. Saf., 124 (2016) 147–154.
- J. Chen, D. Rao, H. Dong, B. Sun, B. Shao, G. Cao, X. Guan,
The role of active manganese species and free radicals in
permanganate/bisulfite process, J. Hazard. Mater., 388 (2020)
121735, doi: 10.1016/j.jhazmat.2019.121735.
- G. Wang, W. Shi, D. Ma, B. Gao, Impacts of permanganate/bisulfite pre-oxidation on DBP formation during the
post chlorine disinfection of ciprofloxacin-contaminated
waters, Sci. Total Environ., 731 (2020) 138755, doi:10.1016/
j.scitotenv.2020.138755.
- B. Sun, D. Li, W. Linghu, X. Guan, Degradation of ciprofloxacin
by manganese(III) intermediate: insight into the potential
application of permanganate/bisulfite process, Chem. Eng. J.,
339 (2018) 144–152.
- B. Sun, X. Guan, J. Fang, P.G. Tratnyek, Activation of manganese
oxidants with bisulfite for enhanced oxidation of organic
contaminants: the involvement of Mn(III), Environ. Sci.
Technol., 49 (2015) 12414–12421.
- Y. Zhu, X. Yang, J. Qiao, X. Zhang, X. Guan, Effects of KMnO4/NaHSO3 pre-oxidation on the formation potential of disinfection
by-products during subsequent chlorination, Chem. Eng. J.,
372 (2019) 825–835.
- B. Sun, D. Rao, H. Dong, X. Guan, Comparing the suitability of
sodium hyposulfite, hydroxylamine hydrochloride and sodium
sulfite as the quenching agents for permanganate oxidation,
RSC Adv., 6 (2016) 13335–13342.
- D. Ma, B. Peng, Y. Zhang, B. Gao, Y. Wang, Q. Yue, Q. Li,
Influences of dissolved organic matter characteristics on
trihalomethanes formation during chlorine disinfection of
membrane bioreactor effluents, Bioresour. Technol., 165 (2014)
81–87.
- P. Xie, J. Ma, J. Fang, Y. Guan, S. Yue, X. Li, L. Chen, Comparison
of permanganate preoxidation and preozonation on algae
containing water: cell integrity, characteristics, and chlorinated
disinfection byproduct formation, Environ. Sci. Technol.,
47 (2013) 14051–14061.
- R.S. Magazinovic, B.C. Nicholson, D.E. Mulcahy, D.E. Davey,
Bromide levels in natural waters: its relationship to levels of
both chloride and total dissolved solids and the implications for
water treatment, Chemosphere, 57 (2004) 329–335.
- D. Ma, B. Gao, D. Hou, Y. Wang, Q. Yue, Q. Li, Evaluation of
a submerged membrane bioreactor (SMBR) coupled with
chlorine disinfection for municipal wastewater treatment and
reuse, Desalination, 313 (2013) 134–139.
- Y. Gao, Y. Zhou, S.Y. Pang, J. Jiang, Z. Yang, Y. Shen, Z. Wang,
P.X. Wang, L.H. Wang, New Insights into the combination of
permanganate and bisulfite as a novel advanced oxidation
process: importance of high valent manganese-oxo species and
sulfate radical, Environ. Sci. Technol., 53 (2019) 3689–3696.
- B. Sun, H. Dong, D. He, D. Rao, X. Guan, Modeling the kinetics
of contaminants oxidation and the generation of manganese(III)
in the permanganate/bisulfite process, Environ. Sci. Technol.,
50 (2016) 1473–1482.
- B. Sun, Q. Bao, X. Guan, Critical role of oxygen for rapid
degradation of organic contaminants in permanganate/bisulfite
process, J. Hazard. Mater., 352 (2018) 157–164.
- T. Zeng, C.J. Wilson, W.A. Mitch, Effect of chemical oxidation
on the sorption tendency of dissolved organic matter to a
model hydrophobic surface, Environ. Sci. Technol., 48 (2014)
5118–5126.
- Z. Shi, C. Jin, J. Zhang, L. Zhu, Insight into mechanism of
arsanilic acid degradation in permanganate-sulfite system: role
of reactive species, Chem. Eng. J., 359 (2019) 1463–1471.
- W. Chu, X. Li, T. Bond, N. Gao, X. Bin, Q. Wang, S. Ding,
Copper increases reductive dehalogenation of haloacetamides
by zero-valent iron in drinking water: reduction efficiency and
integrated toxicity risk, Water Res., 107 (2016) 141–150.