References

  1. M. Qiu, B. Hu, Z. Chen, H. Yang, L. Zhuang, X. Wang, Challenges of organic pollutant photocatalysis by biochar-based catalysts, Biochar, 3 (2021) 117–123.
  2. M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Recent advances on preparation and environmental applications of
    MOF-derived carbons in catalysis, Sci. Total Environ., 760 (2021) 143333, doi: 10.1016/j.scitotenv.2020.143333.
  3. A. Bhatnagar, M. Sillanpää, Removal of natural organic matter (NOM) and its constituents from water by adsorption – a review, Chemosphere, 166 (2017) 497–510.
  4. N. Turkten, I. Natali Sora, A. Tomruk, M. Bekbolet, Photocatalytic degradation of humic acids using LaFeO3, Catalysts, 8 (2018) 630, doi: 10.3390/catal8120630.
  5. R. Al-Rasheed, D.J. Cardin, Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow, Chemosphere, 51 (2003) 925–933.
  6. C. Li, Y. Dong, D. Wu, L. Peng, H. Kong, Surfactant modified zeolite as adsorbent for removal of humic acid from water, Appl. Clay Sci., 52 (2011) 353–357.
  7. B. Bolto, D. Dixon, R. Eldridge, Ion exchange for the removal of natural organic matter, React. Funct. Polym., 60 (2004) 171–182.
  8. M.H. Ehrampoush, M. Taghi, T. Jasemizad, M. Askarshahi, Evaluation of the efficiency of electron beam irradiation for removal of humic acid from aqueous solutions, Tolooebehdasht, 16 (2017) 47–55.
  9. X.Z. Li, C.M. Fan, Y.P. Sun, Enhancement of photocatalytic oxidation of humic acid in TiO2 suspensions by increasing cation strength, Chemosphere, 48 (2002) 453–460.
  10. M.Z. Pedram, M. Kazemeini, M. Fattahi, A. Amjadian, A physicochemical evaluation of modified HZSM-5 catalyst utilized for production of dimethyl ether from methanol, Pet. Sci. Technol., 32 (2014) 904–911.
  11. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol., C, 9 (2008) 1–12.
  12. S.M. Rahimi, F.S. Arghavan, A. Othmani, N. Nasseh, Magnetically recoverable nickel ferrite coated with CuS nanocomposite for degradation of metronidazole in photocatalytic and photo-Fenton like processes, Int. J. Environ. Anal. Chem., (2020) 1–21, doi: 10.1080/03067319.2020.1817420.
  13. X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang, Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Crit. Rev. Env. Sci. Technol., 51 (2021) 751–790.
  14. R. Yuan, B. Zhou, X. Zhang, H. Guan, Photocatalytic degradation of humic acids using substrate-supported
    Fe3+-doped TiO2 nanotubes under UV/O3 for water purification, Environ. Sci. Pollut. Res. Int., 22 (2015) 17955–17964.
  15. L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, X. Wang, Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater, Chemosphere, 273 (2021) 128576, doi: 10.1016/j.chemosphere.2020.128576.
  16. N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto, A. Hossein Panahi, A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight, Environ. Pollut., 261 (2020) 114127, doi:10.1016/j.envpol.2020.114127.
  17. M.-H. Baek, J.-S. Hong, J.-W. Yoon, J.-K. Suh, Photocatalytic degradation of humic acid by Fe-supported on spherical activated carbon with enhanced activity, Int. J. Photoenergy, 2013 (2013) 296821, doi: 10.1155/2013/296821.
  18. M.A. Nasseri, S.M. Sadeghzadeh, A highly active FeNi3–SiO2 magnetic nanoparticles catalyst for the preparation of 4H-benzo[b]pyrans and Spirooxindoles under mild conditions, J. Iran. Chem. Soc., 10 (2013) 1047–1056.
  19. A. Garmroudi, M. Kheirollahi, S.A. Mousavi, M. Fattahi, E.H. Mahvelati, Effects of graphene oxide/TiO2 nanocomposite, graphene oxide nanosheets and Cedr extraction solution on IFT reduction and ultimate oil recovery from a carbonate rock, Petroleum, (2020), (in Press).
  20. M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva, A.H. Panahi, The practical utility of the synthesis FeNi3@SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation, Chemosphere, 239 (2020) 124723, doi: 10.1016/j.chemosphere.2019.124723.
  21. T. Komine, M. Nakagawa, Fundamental analysis for visiblelight communication system using LED lights, IEEE Trans. Consum. Electron., 50 (2004) 100–107.
  22. T. Kozacki, M. Chlipala, Color holographic display with white light LED source and single phase only SLM, Opt. Express, 24 (2016) 2189–2199.
  23. M. Khodadadi, M.H. Ehrampoush, A. Allahresani, M.T. Ghaneianc, M.H. Lotfi, A. Mahvi, FeNi3@SiO2 magnetic nanocomposite as a highly efficient Fenton-like catalyst for humic acid adsorption and degradation in neutral environments, Desal. Water Treat., 118 (2018) 249–267.
  24. M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian, A. Allahresani, A.H. Mahvi, Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photocatalytic degradation of tetracycline in simulated wastewater, J. Mol. Liq., 255 (2018) 224–232.
  25. A. Mohseni-Bandpei, A. Eslami, H. Kazemian, M. Zarrabi, T.J. Al-Musawi, A high density
    3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: characterization and optimization of the adsorption data using response surface methodology, Environ. Technol. Innovation, 18 (2020) 100642, doi: 10.1016/j.eti.2020.100642.
  26. B. Paul, V. Parashar, A. Mishra, Graphene in the Fe3O4 nanocomposite switching the negative influence of humic acid coating into an enhancing effect in the removal of arsenic from water, Environ. Sci.: Environ. Sci. Water Res. Technol., 1 (2015) 77–83.
  27. B. Akbari-Adergani, M.H. Saghi, Removal of dibutyl phthalate from aqueous environments using a nanophotocatalytic Fe, Ag-ZnO/VIS-LED system: modeling and optimization, Environ. Technol., 39 (2018) 1566–1576.
  28. F. Saadati, H. Aghajanloo, S. Piri, Preparation and characterization of nanoporous clay and its application as an effective catalyst in the Friedel-Crofts acylation of aromatic rings, J. Appl. Res. Chem., 11 (2017) 15–22.
  29. M. Khodadadi, M.H. Saghi, N.A. Azadi, S. Sadeghi, Adsorption of chromium VI from aqueous solutions onto nanoparticle sorbent: Chitozan-Fe-Zr, Majallahi Danishgahi Ulumi Pizishkii Mazandaran, 26 (2016) 70–82.
  30. E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A.H. Panahi, M. Havangi, F.K. Mostafapur, Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: optimizing the experimental parameters using the Box–Behnken statistical methodology and kinetic studies, Microchem. J., 147 (2019) 643–653.
  31. S.G. Rashid, M.A. Gondal, A. Hameed, M. Aslam, M.A. Dastageer, Z.H. Yamani, D.H. Anjum, Synthesis, characterization and visible light photocatalytic activity of Cr3+, Ce3+ and N co-doped TiO2 for the degradation of humic acid, RSC Adv., 5 (2015) 32323–32332.
  32. G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A.H. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. Environ. Sci. Technol., 12 (2015) 603–616.
  33. V. Oskoei, M.H. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption, J. Mol. Liq., 213 (2016) 374–380.
  34. F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian, Adsorption-photocatalytic processes for removal of pentachlorophenol contaminant using FeNi3/SiO2/ZnO magnetic nanocomposite under simulated solar light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 7462–7475.
  35. J.-K. Yang, S.-M. Lee, Removal of Cr(VI) and humic acid by using TiO2 photocatalysis, Chemosphere, 63 (2006) 1677–1684.
  36. B. Akbari-Adergani, M. Saghi, A. Eslami, A. Mohseni-Bandpei, M. Rabbani, Modelling and optimization of a nanophotocatalytic process using Fe, Ag-ZnO under visible LED irradiation for dibutyl phthalate removal from aqueous environments, Environ. Technol., 39 (2017) 1–31.
  37. X. Li, D. Liu, S. Song, H. Zhang, Fe3O4@SiO2@TiO2@Pt hierarchical core–shell microspheres: controlled synthesis, enhanced degradation system, and rapid magnetic separation to recycle, Cryst. Growth Des., 14 (2014) 5506–5511.
  38. N. Nasseh, F.S. Arghavan, N. Daglioglu, A. Asadi, Fabrication of novel magnetic CuS/Fe3O4/GO nanocomposite for organic pollutant degradation under visible light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 19222–19233.
  39. J. Rashid, M.A. Barakat, Y. Ruzmanova, A. Chianese, Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater, Environ. Sci. Pollut. Res., 22 (2015) 3149–3157.
  40. D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis, N.P. Xekoukoulotakis, D. Venieri, D. Mantzavinos, Degradation, mineralization and antibiotic inactivation of amoxicillin by UV-A/TiO2 photocatalysis, J. Environ. Manage., 98 (2012) 168–174.
  41. M. Fattahi, M. Kazemeini, F. Khorasheh, A. Rashidi, An investigation of the oxidative dehydrogenation of propane kinetics over a vanadium–graphene catalyst aiming at minimizing of the COx species, Chem. Eng. Sci., 250 (2014) 14–24.
  42. L. Vafajoo, F. Khorasheh, M.H. Nakhjavani, M. Fattahi, Kinetic parameters optimization and modeling of catalytic dehydrogenation of heavy paraffins to olefins, Pet. Sci. Technol., 32 (2014) 813–820.