References
- M. Qiu, B. Hu, Z. Chen, H. Yang, L. Zhuang, X. Wang, Challenges
of organic pollutant photocatalysis by biochar-based catalysts,
Biochar, 3 (2021) 117–123.
- M. Hao, M. Qiu, H. Yang, B. Hu, X. Wang, Recent advances on
preparation and environmental applications of
MOF-derived
carbons in catalysis, Sci. Total Environ., 760 (2021) 143333,
doi: 10.1016/j.scitotenv.2020.143333.
- A. Bhatnagar, M. Sillanpää, Removal of natural organic
matter (NOM) and its constituents from water by adsorption –
a review, Chemosphere, 166 (2017) 497–510.
- N. Turkten, I. Natali Sora, A. Tomruk, M. Bekbolet, Photocatalytic
degradation of humic acids using LaFeO3, Catalysts, 8 (2018)
630, doi: 10.3390/catal8120630.
- R. Al-Rasheed, D.J. Cardin, Photocatalytic degradation of
humic acid in saline waters. Part 1. Artificial seawater: influence
of TiO2, temperature, pH, and air-flow, Chemosphere, 51 (2003)
925–933.
- C. Li, Y. Dong, D. Wu, L. Peng, H. Kong, Surfactant modified
zeolite as adsorbent for removal of humic acid from water,
Appl. Clay Sci., 52 (2011) 353–357.
- B. Bolto, D. Dixon, R. Eldridge, Ion exchange for the removal of
natural organic matter, React. Funct. Polym., 60 (2004) 171–182.
- M.H. Ehrampoush, M. Taghi, T. Jasemizad, M. Askarshahi,
Evaluation of the efficiency of electron beam irradiation for
removal of humic acid from aqueous solutions, Tolooebehdasht,
16 (2017) 47–55.
- X.Z. Li, C.M. Fan, Y.P. Sun, Enhancement of photocatalytic
oxidation of humic acid in TiO2 suspensions by increasing
cation strength, Chemosphere, 48 (2002) 453–460.
- M.Z. Pedram, M. Kazemeini, M. Fattahi, A. Amjadian,
A physicochemical evaluation of modified HZSM-5 catalyst
utilized for production of dimethyl ether from methanol, Pet.
Sci. Technol., 32 (2014) 904–911.
- U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic
degradation of organic contaminants over titanium dioxide: a
review of fundamentals, progress and problems, J. Photochem.
Photobiol., C, 9 (2008) 1–12.
- S.M. Rahimi, F.S. Arghavan, A. Othmani, N. Nasseh, Magnetically
recoverable nickel ferrite coated with CuS nanocomposite for
degradation of metronidazole in photocatalytic and photo-Fenton like processes, Int. J. Environ. Anal. Chem., (2020) 1–21,
doi: 10.1080/03067319.2020.1817420.
- X. Liu, R. Ma, L. Zhuang, B. Hu, J. Chen, X. Liu, X. Wang,
Recent developments of doped g-C3N4 photocatalysts for the
degradation of organic pollutants, Crit. Rev. Env. Sci. Technol.,
51 (2021) 751–790.
- R. Yuan, B. Zhou, X. Zhang, H. Guan, Photocatalytic degradation
of humic acids using substrate-supported
Fe3+-doped TiO2
nanotubes under UV/O3 for water purification, Environ. Sci.
Pollut. Res. Int., 22 (2015) 17955–17964.
- L. Yao, H. Yang, Z. Chen, M. Qiu, B. Hu, X. Wang, Bismuth
oxychloride-based materials for the removal of organic
pollutants in wastewater, Chemosphere, 273 (2021) 128576, doi:
10.1016/j.chemosphere.2020.128576.
- N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto,
A. Hossein Panahi, A comprehensive study on the application
of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel
photo-catalyst for degradation of tamoxifen in the presence
of simulated sunlight, Environ. Pollut., 261 (2020) 114127,
doi:10.1016/j.envpol.2020.114127.
- M.-H. Baek, J.-S. Hong, J.-W. Yoon, J.-K. Suh, Photocatalytic
degradation of humic acid by Fe-supported on spherical
activated carbon with enhanced activity, Int. J. Photoenergy,
2013 (2013) 296821, doi: 10.1155/2013/296821.
- M.A. Nasseri, S.M. Sadeghzadeh, A highly active FeNi3–SiO2 magnetic nanoparticles catalyst for the preparation of
4H-benzo[b]pyrans and Spirooxindoles under mild conditions,
J. Iran. Chem. Soc., 10 (2013) 1047–1056.
- A. Garmroudi, M. Kheirollahi, S.A. Mousavi, M. Fattahi,
E.H. Mahvelati, Effects of graphene oxide/TiO2 nanocomposite,
graphene oxide nanosheets and Cedr extraction solution on
IFT reduction and ultimate oil recovery from a carbonate
rock, Petroleum, (2020), (in Press).
- M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva,
A.H. Panahi, The practical utility of the synthesis FeNi3@SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for
the humic acid degradation, Chemosphere, 239 (2020) 124723,
doi: 10.1016/j.chemosphere.2019.124723.
- T. Komine, M. Nakagawa, Fundamental analysis for visiblelight
communication system using LED lights, IEEE Trans.
Consum. Electron., 50 (2004) 100–107.
- T. Kozacki, M. Chlipala, Color holographic display with white
light LED source and single phase only SLM, Opt. Express,
24 (2016) 2189–2199.
- M. Khodadadi, M.H. Ehrampoush, A. Allahresani, M.T. Ghaneianc,
M.H. Lotfi, A. Mahvi, FeNi3@SiO2 magnetic nanocomposite
as a highly efficient Fenton-like catalyst for humic
acid adsorption and degradation in neutral environments,
Desal. Water Treat., 118 (2018) 249–267.
- M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian,
A. Allahresani, A.H. Mahvi, Synthesis and characterizations of
FeNi3@SiO2@TiO2 nanocomposite and its application in photocatalytic
degradation of tetracycline in simulated wastewater,
J. Mol. Liq., 255 (2018) 224–232.
- A. Mohseni-Bandpei, A. Eslami, H. Kazemian, M. Zarrabi,
T.J. Al-Musawi, A high density
3-aminopropyltriethoxysilane
grafted pumice-derived silica aerogel as an efficient
adsorbent for ibuprofen: characterization and optimization
of the adsorption data using response surface methodology,
Environ. Technol. Innovation, 18 (2020) 100642, doi: 10.1016/j.eti.2020.100642.
- B. Paul, V. Parashar, A. Mishra, Graphene in the Fe3O4 nanocomposite
switching the negative influence of humic acid
coating into an enhancing effect in the removal of arsenic from
water, Environ. Sci.: Environ. Sci. Water Res. Technol., 1 (2015)
77–83.
- B. Akbari-Adergani, M.H. Saghi, Removal of dibutyl phthalate
from aqueous environments using a nanophotocatalytic Fe,
Ag-ZnO/VIS-LED system: modeling and optimization, Environ.
Technol., 39 (2018) 1566–1576.
- F. Saadati, H. Aghajanloo, S. Piri, Preparation and
characterization of nanoporous clay and its application as an
effective catalyst in the Friedel-Crofts acylation of aromatic
rings, J. Appl. Res. Chem., 11 (2017) 15–22.
- M. Khodadadi, M.H. Saghi, N.A. Azadi, S. Sadeghi, Adsorption
of chromium VI from aqueous solutions onto nanoparticle
sorbent: Chitozan-Fe-Zr, Majallahi Danishgahi Ulumi Pizishkii
Mazandaran, 26 (2016) 70–82.
- E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A.H. Panahi,
M. Havangi, F.K. Mostafapur, Photocatalytic degradation of
catechol using ZnO nanoparticles as catalyst: optimizing the
experimental parameters using the Box–Behnken statistical
methodology and kinetic studies, Microchem. J., 147 (2019)
643–653.
- S.G. Rashid, M.A. Gondal, A. Hameed, M. Aslam,
M.A. Dastageer, Z.H. Yamani, D.H. Anjum, Synthesis, characterization
and visible light photocatalytic activity of Cr3+,
Ce3+ and N co-doped TiO2 for the degradation of humic acid,
RSC Adv., 5 (2015) 32323–32332.
- G.H. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari,
A.H. Mahvi, Photocatalytic degradation of tetracycline
using nanosized titanium dioxide in aqueous solution, Int.
Environ. Sci. Technol., 12 (2015) 603–616.
- V. Oskoei, M.H. Dehghani, S. Nazmara, B. Heibati, M. Asif,
I. Tyagi, S. Agarwal, V.K. Gupta, Removal of humic acid from
aqueous solution using UV/ZnO nano-photocatalysis and
adsorption, J. Mol. Liq., 213 (2016) 374–380.
- F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian,
Adsorption-photocatalytic processes for removal of pentachlorophenol
contaminant using FeNi3/SiO2/ZnO magnetic
nanocomposite under simulated solar light irradiation, Environ.
Sci. Pollut. Res., 28 (2021) 7462–7475.
- J.-K. Yang, S.-M. Lee, Removal of Cr(VI) and humic acid by
using TiO2 photocatalysis, Chemosphere, 63 (2006) 1677–1684.
- B. Akbari-Adergani, M. Saghi, A. Eslami, A. Mohseni-Bandpei, M. Rabbani, Modelling and optimization of a
nanophotocatalytic process using Fe, Ag-ZnO under visible
LED irradiation for dibutyl phthalate removal from aqueous
environments, Environ. Technol., 39 (2017) 1–31.
- X. Li, D. Liu, S. Song, H. Zhang, Fe3O4@SiO2@TiO2@Pt
hierarchical core–shell microspheres: controlled synthesis,
enhanced degradation system, and rapid magnetic separation
to recycle, Cryst. Growth Des., 14 (2014) 5506–5511.
- N. Nasseh, F.S. Arghavan, N. Daglioglu, A. Asadi, Fabrication
of novel magnetic CuS/Fe3O4/GO nanocomposite for organic
pollutant degradation under visible light irradiation, Environ.
Sci. Pollut. Res., 28 (2021) 19222–19233.
- J. Rashid, M.A. Barakat, Y. Ruzmanova, A. Chianese, Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of
2-chlorophenol in simulated wastewater, Environ. Sci. Pollut.
Res., 22 (2015) 3149–3157.
- D. Dimitrakopoulou, I. Rethemiotaki, Z. Frontistis,
N.P. Xekoukoulotakis,
D. Venieri, D. Mantzavinos, Degradation,
mineralization and antibiotic inactivation of amoxicillin by
UV-A/TiO2 photocatalysis, J. Environ. Manage., 98 (2012)
168–174.
- M. Fattahi, M. Kazemeini, F. Khorasheh, A. Rashidi, An
investigation of the oxidative dehydrogenation of propane
kinetics over a vanadium–graphene catalyst aiming at
minimizing of the COx species, Chem. Eng. Sci., 250 (2014)
14–24.
- L. Vafajoo, F. Khorasheh, M.H. Nakhjavani, M. Fattahi,
Kinetic parameters optimization and modeling of catalytic
dehydrogenation of heavy paraffins to olefins, Pet. Sci. Technol.,
32 (2014) 813–820.