References
- Z. Aksu, Ö. Tunç, Application of biosorption for penicillin
G removal: comparison with activated carbon, Process
Biochem., 40 (2005) 831–847.
- D. Balarak, Y. Mahdavi, F. Mostafapour, Application of
alumina-coated carbon nanotubes in removal of tetracycline
from aqueous solution, Br. J. Pharm. Res., 12 (2016) 1–11.
- G.D. Singh, K.C. Gupta, Photo and UV degradation of
ciprofloxacin antibiotic, Int. J. Curr. Microbiol. Appl. Sci.,
3 (2014) 641–648.
- T.S. Khokhar, F.N. Memon, A.A. Memon, F. Durmaz, S. Memon,
Q.K. Panhwar, S. Muneer, Removal of ciprofloxacin from
aqueous solution using wheat bran as adsorbent, Sep. Sci.
Technol., 54 (2019) 1278–1288.
- H.G. Guo, N.Y. Gao, W.H. Chu, L. Li, Y.J. Zhang, J.S. Gu,
Y.L. Gu, Photochemical degradation of ciprofloxacin in UV and
UV/H2O2 process: kinetics, parameters, and products, Environ.
Sci. Pollut. Res., 20 (2013) 3202–3213.
- K. Kummerer, A. Al-Ahmad, V. Mersch-Sundermann,
Biodegradability of some antibiotics, elimination of the
genotoxicity and affection of wastewater bacteria in a simple
test, Chemosphere, 40 (2000) 701–710.
- P.-H. Chang, W.-T. Jiang, Z. Li, C.-Y. Kuo, Q. Wu, J.-S. Jean,
G. Lv, Interaction of ciprofloxacin and probe compounds with
palygorskite PFl-1, J. Hazard. Mater., 303 (2016) 55–63.
- X. Xu, J. He, Y. Li, Z. Fang, S. Xu, Adsorption and transport of
ciprofloxacin in quartz sand at different pH and ionic strength,
Open J. Soil Sci., 4 (2014) 407–416.
- K. Kümmerer, Significance of antibiotics in the environment
title, J. Antimicrob. Chemother., 52 (2003) 5–7.
- S.S. Saygi, D. Battal, The importance of drug wastes from
the standpoint of environment and human health, Marmara
Pharm. J., 16 (2012) 82–90.
- A.J. Watkinson, E.J. Murby, S.D. Costanzo, Removal of
antibiotics in conventional and advanced wastewater treatment:
implications for environmental discharge and wastewater
recycling, Water Res., 41 (2007) 4164–4176.
- T. An, H. Yang, W. Song, G. Li, H. Luo, W.J. Cooper, Mechanistic
considerations for the advanced oxidation treatment of
fluoroquinolone pharmaceutical compounds using TiO2
heterogeneous catalysis, J. Phys. Chem. A, 114 (2010) 2569–2575.
- M. Malakootian, M. Ahmadian, Removal of ciprofloxacin from
aqueous solution by electro-activated persulfate oxidation using
aluminum electrodes, Water Sci. Technol., 80 (2019) 587–596.
- H. Liang, T. Li, J. Zhang, D. Zhou, C. Hu, X. An, R. Liu, H. Liu, 3-D
hierarchical Ag/ZnO@CF for synergistically removing phenol
and Cr(VI): heterogeneous vs. homogeneous photocatalysis,
J. Colloid Interface Sci., 558 (2020) 85–94.
- N. Javid, Z. Honarmandrad, M. Malakootian, Ciprofloxacin
removal from aqueous solutions by ozonation with calcium
peroxide, Desal. Water Treat., 174 (2020) 178–185.
- M. Dolatabadi, S. Ahmadzadeh, A rapid and efficient removal
approach for degradation of metformin in pharmaceutical
wastewater using electro-Fenton process; optimization by
response surface methodology, Water Sci. Technol., 80 (2019)
685–694.
- U. von Gunten, Ozonation of drinking water: Part I. Oxidation
kinetics and product formation, Water Res., 37 (2003) 1443–1467.
- Y. Abdollahi, A.H. Abdullah, U.I. Gaya, S. Ahmadzadeh,
A. Zakaria, K. Shameli, Z. Zainal, H. Jahangirianb, N.A. Yusof,
Photocatalytic degradation of 1,4-benzoquinone in aqueous
ZnO dispersions, J. Braz. Chem. Soc., 23 (2012) 236–240.
- S.M.A.A. Azeez, HPLC Determination of Four Textile Dyes
and Studying Their Degradation using Spectrophotometric
Technique, Thesis, An-Najah National University Faculty
of Graduate Studies, Submitted in Partial Fulfillment of the
Requirements for the Degree of Master of Science in Chemistry,
Faculty of Graduate Studies, at An-Najah National University,
Nablus, Palestine, 2005, pp. 1–110. Available at: https://doi.
org/10.1017/CBO9781107415324.004.
- Z. Li, H. Hong, L. Liao, C.J. Ackley, L.A. Schulz, R.A. MacDonald,
A.L. Mihelich, S.M. Emard, A mechanistic study of
ciprofloxacin removal by kaolinite, Colloids Surf., B, 88 (2011)
339–344.
- W.-T. Jiang, P.-H. Chang, Y.-S. Wang, Y. Tsai, J.-S. Jean,
Z. Li, K. Krukowski, Removal of ciprofloxacin from water by
birnessite, J. Hazard. Mater., 250–251 (2013) 362–369.
- N. Genç, E. Can Dogan, M. Yurtsever, Bentonite for ciprofloxacin
removal from aqueous solution, Water Sci. Technol., 68 (2013)
848–855.
- D. Balarak, F.K. Mostafapour, A. Joghataei, Kinetics and
mechanism of red mud in adsorption of ciprofloxacin in
aqueous solution, Biosci. Biotechnol. Res. Commun., 10 (2017)
241–248.
- C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent
advancement of coagulation–flocculation and its application
in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016)
4363–4389.
- S.F. de Aquino, E.M.F. Brandt, C.A. de L. Chernicharo, Remoção
de fármacos e desreguladores endócrinos em estações de
tratamento de esgoto: Revisão da literatura, Eng. Sanit. e
Ambient., 18 (2013) 187–204.
- F.B. Queiroz, E.M.F. Brandt, S.F. Aquino, C.A.L. Chernicharo,
R.J.C.F. Afonso, Occurrence of pharmaceuticals and endocrine
disruptors in raw sewage and their behavior in UASB reactors
operated at different hydraulic retention times, Water Sci.
Technol., 66 (2012) 2562–2569.
- C.V. Faria, G.C. Moreira, A.P.B. Araújo, L.E. Marques,
L.P. Oliveira, B.C. Ricci, M.C.S. Amaral, F.V. Fonseca, Integration
of ozonation and an anaerobic expanded granular sludge bed
reactor for micropollutant removal from sewage, Environ.
Sci. Pollut. Res., 28 (2020) 23778–23790.
- V. Matamoros, V. Salvadó, Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination
reactor for removing emerging contaminants at full-scale
wastewater treatment plants in Spain, J. Environ. Manage.,
117 (2013) 96–102.
- M.E.R. Jalil, M. Baschini, K. Sapag, Removal of ciprofloxacin
from aqueous solutions using pillared clays, Materials (Basel),
10 (2017) 17–19.
- J.A. González, M.E. Villanueva, L.L. Piehl, G.J. Copello,
Development of a chitin/graphene oxide hybrid composite
for the removal of pollutant dyes: adsorption and desorption
study, Chem. Eng. J., 280 (2015) 41–48.
- Y. Li, Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu,
Z. Wang, Y. Xia, L. Xia, Comparative study of methylene blue
dye adsorption onto activated carbon, graphene oxide, and
carbon nanotubes, Chem. Eng. Res. Des., 91 (2013) 361–368.
- B. Yu, X. Zhang, J. Xie, R. Wu, X. Liu, H. Li, F. Chen, H. Yang,
Z. Ming, S.-T. Yang, Magnetic graphene sponge for the removal
of methylene blue, Appl. Surf. Sci., 351 (2015) 765–771.
- Y. Zhuang, F. Yu, J. Chen, J. Ma, Batch and column adsorption
of methylene blue by graphene/alginate nanocomposite:
comparison of single-network and double-network hydrogels,
J. Environ. Chem. Eng., 4 (2016) 147–156.
- P. Arabkhani, H. Javadian, A. Asfaram, M. Ateia, Decorating
graphene oxide with zeolitic imidazolate framework (ZIF-8)
and pseudo-boehmite offers ultra-high adsorption capacity
of diclofenac in hospital effluents, Chemosphere, 271 (2021)
129610, doi: 10.1016/j.chemosphere.2021.129610.
- P. Arabkhani, A. Asfaram, M. Ateia, Easy-to-prepare graphene
oxide/sodium montmorillonite polymer nanocomposite with
enhanced adsorption performance, J. Water Process Eng.,
38 (2020) 101651, doi: 10.1016/j.jwpe.2020.101651.
- P.N. Diagboya, B.I. Olu-Owolabi, K.O. Adebowale, Synthesis of
covalently bonded graphene oxide–iron magnetic nanoparticles
and the kinetics of mercury removal, RSC Adv., 5 (2015)
2536–2542.
- J. Sun, Q. Liang, Q. Han, X. Zhang, M. Ding, One-step synthesis
of magnetic graphene oxide nanocomposite and its application
in magnetic solid-phase extraction of heavy metal ions from
biological samples, Talanta, 132 (2015) 557–563.
- P. Zong, S. Wang, Y. Zhao, H. Wang, H. Pan, C. He, Synthesis
and application of magnetic graphene/iron oxides composite
for the removal of U(VI) from aqueous solutions, Chem. Eng. J.,
220 (2013) 45–52.
- S. Moharramzadeh, M. Baghdadi, In situ sludge magnetic
impregnation (ISSMI) as an efficient technology for
enhancement of sludge sedimentation: removal of methylene
blue using nitric acid-treated graphene oxide as a test process,
J. Environ. Chem. Eng., 4 (2016) 2090–2102.
- J. Liu, G. Liu, W. Liu, Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new
adsorbents to remove cationic dyes from aqueous solutions,
Chem. Eng. J., 257 (2014) 299–308.
- M. Behjati, M. Baghdadi, A. Karbassi, Removal of mercury
from contaminated saline wasters using dithiocarbamate
functionalized-magnetic nanocomposite, J. Environ. Manage.,
213 (2018) 66–78.
- APHA/AWWA/WEF, Standard Methods for the Examination
of Water and Wastewater, American Public Health Association
(APHA), American Water Works Association (AWWA), Water
Environment Federation (WEF), Washington DC, 2012, p. 541.
Available at: https://doi.org/ISBN 9780875532356.
- V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, Photocatalytic
degradation using design of experiments: a review and example
of the Congo red degradation, J. Hazard. Mater., 175 (2010)
33–44.
- F. Tümsek, Ö. Avci, Investigation of kinetics and isotherm
models for the Acid orange 95 adsorption from aqueous
solution onto natural minerals, J. Chem. Eng. Data, 58 (2013)
551–559.
- G.X. Wang, J. Yang, J. Park, X.L. Gou, B. Wang, H. Liu, J. Yao,
Facile synthesis and characterization of graphene nanosheets,
J. Phys. Chem. C, 112 (2008) 8192–8195.
- E.-Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim,
S.O. Kim, Noncovalent functionalization of graphene with
end-functional polymers, J. Mater. Chem., 20 (2010) 1907–1912.
- S. Mirshahghassemi, J.R. Lead, Oil recovery from water
under environmentally relevant conditions using magnetic
nanoparticles, Environ. Sci. Technol., 49 (2015) 11729–11736.
- R. Bagheri, M. Ghaedi, A. Asfaram, E. Alipanahpour Dil,
H. Javadian, RSM-CCD design of malachite green adsorption
onto activated carbon with multimodal pore size distribution
prepared from Amygdalus scoparia: kinetic and isotherm studies,
Polyhedron, 171 (2019) 464–472.
- P. Arabkhani, A. Asfaram, Development of a novel threedimensional
magnetic polymer aerogel as an efficient adsorbent
for malachite green removal, J. Hazard. Mater., 384 (2020)
121394, doi: 10.1016/j.jhazmat.2019.121394.
- E. Alipanahpour Dil, M. Ghaedi, A. Asfaram, F. Mehrabi,
A.A. Bazrafshan, L. Tayebi, Synthesis and application of
Ce-doped TiO2 nanoparticles loaded on activated carbon for
ultrasound-assisted adsorption of Basic red 46 dye, Ultrason.
Sonochem., 58 (2019) 104702, doi: 10.1016/j.ultsonch.2019.104702.
- S. Sharma, G. Sharma, A. Kumar, P. Dhiman, T. Al Garni,
M. Naushad, Z. ALOthman, F.J. Stadler, Controlled synthesis
of porous Zn/Fe based layered double hydroxides: synthesis
mechanism, and ciprofloxacin adsorption, Sep. Purif. Technol.,
278 (2021) 119481, doi: 10.1016/j.seppur.2021.119481.
- G. Abu Rumman, T.J. Al-Musawi, M. Sillanpaa, D. Balarak,
Adsorption performance of an amine-functionalized MCM-41 mesoporous silica nanoparticle system for ciprofloxacin
removal, Environ. Nanotechnol. Monit. Manage., 16 (2021)
100536, doi: 10.1016/j.enmm.2021.100536.
- X. Zheng, X. He, H. Peng, J. Wen, S. Lv, Efficient adsorption
of ciprofloxacin using Ga2S3/S-modified biochar via the hightemperature
sulfurization, Bioresour. Technol., 334 (2021)
125238, doi: 10.1016/j.biortech.2021.125238.
- E.H. Chafyq, K. Legrouri, M. Aghrouch, M. Oumam,
S. Mansouri, E. Hassane Khouya, H. Hannache, Adsorption of
ciprofloxacin antibiotic on materials prepared from Moroccan
oil shales, Chem. Phys. Lett., 778 (2021) 138707, doi: 10.1016/j.
cplett.2021.138707.
- R. Antonelli, G.R.P. Malpass, M.G.C. da Silva, M.G.A. Vieira,
Adsorption of ciprofloxacin onto thermally modified bentonite
clay: experimental design, characterization, and adsorbent
regeneration, J. Environ. Chem. Eng., 8 (2020) 104553, doi:
10.1016/j.jece.2020.104553.
- J. Kong, Y. Zheng, L. Xiao, B. Dai, Y. Meng, Z. Ma, J. Wang,
X. Huang, Synthesis and comparison studies of activated
carbons based folium cycas for ciprofloxacin adsorption,
Colloids Surf., A, 606 (2020) 125519, doi:10.1016/j.colsurfa.2020.
125519.
- T. Shahnaz, V. Vishnu Priyan, S. Pandian, S. Narayanasamy, Use
of nanocellulose extracted from grass for adsorption abatement
of Ciprofloxacin and Diclofenac removal with phyto, and
fish toxicity studies, Environ. Pollut., 268 (2021) 115494, doi:
10.1016/j.envpol.2020.115494.