References

  1. H. Vereecken, J.A. Huisman, H.J. Hendricks Franssen, N. Brüggemann, H.R. Bogena, S. Kollet, M. Javaux, J. van der Kruk, J. Vanderborght, Soil hydrology: recent methodological advances, challenges, and perspectives, Water Resour. Res., 51 (2015) 2616–2633.
  2. J. Wang, J.-L. Ding, W.-Q. Chen, A.-X. Yang, Microwave modeling of soil moisture in Oasis regional scale based on Sentinel-1 radar images, J. Infrared Millimeter Waves, 36 (2017) 120–126.
  3. X. Bai, L. Zhang, C. He, Y. Zhu, Estimating regional soil moisture distribution based on NDVI and land surface temperature time series data in the upstream of the Heihe River watershed, Northwest China, Remote Sens., 12 (2020) 2414, doi: 10.3390/rs12152414.
  4. L. Brocca, T. Tullo, F. Melone, T. Moramarco, R. Morbidelli, Catchment scale soil moisture spatial–temporal variability, J. Hydrol., 422 (2012) 63–75.
  5. J. Dong, W.T. Crow, K.J. Tobin, M.H. Cosh, D.D. Bosch, P.J. Starks, M. Seyfried, C. Holifield Collins, Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation, Remote Sens. Environ., 242 (2020) 111756, doi: 10.1016/j.rse.2020.111756.
  6. M. Aubert, N.N. Baghdadi, M. Zribi, K. Ose, M. El Hajj, E. Vaudour, E. Gonzalez-Sosa, Toward an operational bare soil moisture mapping using TerraSAR-X data acquired over agricultural areas, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6 (2013) 900–916.
  7. J. Guo, J. Liu, J. Ning, et al., Construction and validation of soil moisture retrieval model in farmland based on Sentinel multisource data, Trans. Chin. Soc. Agric. Eng., 35 (2019) 71–78.
  8. D.D. Alexakis, F.-D.K. Mexis, A.-E.K. Vozinaki, I.N. Daliakopoulos, I.K. Tsanis, Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach, Sensors, 17 (2017) 1455–1461.
  9. X.J. Zeng, Y.Q. Xing, W. Shan, Y. Zhang, C.Q. Wang, Soil water content retrieval based on Sentinel-1A and Landsat 8 image for Bei’an-Heihe expressway, Chin. J. Eco-Agric., 25 (2017) 118–126.
  10. M.I. Sancer, Shadow-corrected electromagnetic scattering from a randomly rough surface, IEEE Trans. Antennas Propag., 17 (1969) 577–585.
  11. Q. Zhang, F. Xu, Q. Zou, Inversion of bare soil moisture by the least squares support vector machine approach combined with SPM, Dianbo Kexue Xuebao/Chin. J. Radio Sci., 30 (2015) 300–306.
  12. J. Wang, J.-L. Ding, W.-Q. Chen, A.-X. Yang, Microwave modeling of soil moisture in Oasis regional scale based on Sentinel-1 radar images, J. Infrared Millimeter Waves, 36 (2017) 120–126.
  13. J.L. Kong, J.J. Li, P.P. Zhen, et al., Inversion of soil moisture in arid area based on microwave and optical remote sensing data, J. Geo-Inf. Sci., 18 (2016) 857–863.
  14. M. Zribi, A. Gorrab, N. Baghdadi, Z. Lili-Chabaane; B. Mougenot, Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter, IEEE Geosci. Remote Sens. Lett., 11 (2013) 848–852.
  15. S.-K. Kweon, Y. Oh, Estimation of soil moisture and surface roughness from single-polarized radar data for bare soil surface and comparison with dual- and quad-polarization cases, IEEE Trans. Geosci. Remote Sens., 52 (2014) 4056–4064.
  16. Y.S. Bao, L. Lin, S.Y. Wu, K.A.K. Deng, G.P. Petropoulos, Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model, Int. Appl. Earth Obs. Geo-Inf., 72 (2018) 76–85.
  17. E.P.W. Attema, F.T. Ulaby, Vegetation modeled as a water cloud, Radio Sci., 13 (1978) 357–364.
  18. C. Xun, T. Zhang, S. Yun, H. Gong, L. Liu, K. Xie, Modeling and mapping soil moisture of plateau pasture using RADARSAT-2 imagery, Remote Sens., 7 (2015) 1279–1299.
  19. P.C. Dubois, J. van Zyl, T. Engman, Measuring soil moisture with imaging radars, IEEE Trans. Geosci. Remote Sens., 33 (2002) 915–926.
  20. L.N. Lin, Y. Bao, Q. Zuo, et al., Soil moisture retrieval over vegetated areas based on Sentinel-1 and FY-3C data, Remote Sens. Technol. Appl., 33 (2018) 750–758.
  21. F.T. Ulaby, K. Sarabandi, K. Mcdonald, M. Whitt, M. Craig Dobson, Michigan Microwave Canopy Scattering model, Int. J. Remote Sens., 11 (1990) 1223–1253.
  22. J.B. Jiang, D.H. Hu, Y.Q. Liu, et al., Research of soil moisture retrieval model of wheat covered surface based on MIMICS model, J. Triticeae Crops, 35 (2015) 707–713.
  23. R.D. de Roo, Y. Du, F.T. Ulaby, M.C. Dobson, A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion, IEEE Trans. Geosci. Remote Sens., 39 (2001) 864–872.
  24. J.C. Shi, J.-S. Lee, K.S. Chen, Q. Sun, Evaluate usage of decomposition technique in estimation of soil moisture with vegetated surface by multi-temporal measurements data, J. Remote Sens., 6 (2002) 412–415.
  25. W. Liu, J.C. Shi, J.M. Wang, Applying the decomposition technique in vegetated surface to estimate soil moisture by multi-temporal measurements, Remote Sens. Inf., 4 (2005) 3–6.
  26. C. Ren, Y.-J. Liang, X.J. Lu, H.-B. Yan, Research on the soil moisture sliding estimation method using the LS-SVM based on multi-satellite fusion, Int. J. Remote Sens., 40 (2019) 2104–2119.
  27. G. Bertoldi, S.D. Chiesa, C. Notarnicola, L. Pasolli, G. Niedrist, U. Tappeiner, Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling, J. Hydrol., 516 (2014) 245–257.
  28. J.S. Lee, L. Jurkevich, P. Dewaele, P. Wambacq, Speckle filtering of synthetic aperture radar images: a review, Remote Sens. Rev., 8 (1994) 313–340.
  29. G. Garcia-Ros, I. Alhama, F. Alhama, Dimensionless characterization of the non-linear soil consolidation problem of Davis and Raymond. Extended models and universal curves, Appl. Math. Nonlinear Sci., 4 (2019) 61–78.
  30. C. Ogwah, M.O. Eyankware, Investigation of hydrogeochemical processes in groundwater resources located around abandoned Okpara Coal Mine, Enugu Se. Nigeria, J. Clean WAS, 4 (2020) 12–16.
  31. B. Singh, P. Sihag, A. Parsaie, A. Angelaki, Comparative analysis of artificial intelligence techniques for the prediction of infiltration process, Geol. Ecol. Landscapes, 5 (2021) 109–118.
  32. M. Pesaresi, C. Corbane, A. Julea, A.J. Florczyk, V. Syrris, P. Soille, Assessment of the added-value of Sentinel-2 for detecting built-up areas, Remote Sens., 8 (2016) 299, doi: 10.3390/rs8040299.
  33. G. Gutman, A. Ignatov, The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models, Int. J. Remote Sens., 19 (1998) 1533–1543.
  34. J. Guo, J. Liu, J. Ning, Construction and validation of soil moisture retrieval model in farmland based on Sentinel multisource data, Trans. Chin. Soc. Agric. Eng., 35 (2019) 71–78.
  35. Y. Oh, Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces, IEEE Trans. Geosci. Remote Sens., 42 (2004) 596–601.
  36. K. Zhang, Q. Wang, L. Chao, J. Ye, Z. Li, Z. Yu, T. Yang, Q. Ju, Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China, J. Hydrol. (Amsterdam), 574 (2019) 903–914.
  37. J.H. Zhao, B. Zhang, N. Li, Z. Guo, Cooperative inversion of winter wheat covered surface soil moisture based on Sentinel-1/2 remote sensing data, J. Electron. Inf. Technol., 43 (2021) 692–699.
  38. N. Baghdadi, M. El Hajj, M. Zribi, S. Bousbih, Calibration of the water cloud model at C-Band for winter crop fields and grasslands, Remote Sens., 9 (2018) 969, doi: 10.3390/rs9090969.
  39. K. Zhang, L.-j. Chao, Q.-q. Wang, Y.-c. Huang, R.-h. Liu, Y. Hong, Y. Tu, W. Qu, J.-y. Ye, Using multi-satellite microwave remote sensing observations for retrieval of daily surface soil moisture across China, Water Sci. Eng., 12 (2019) 85–97.
  40. Y. Wang, J. Kong, L. Yang, et al., Remote sensing inversion of soil moisture in vegetation-sparse arid areas based on SVR, J. Geo-Inf. Sci., 21 (2019) 1275–1283.