References

  1. H.B. Li, G.C. Liu, X.C. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties, Mater. Chem. Phys., 115 (2009) 9–13.
  2. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  3. T.F. Li, T.C. Wang, G.Z. Qu, D.L. Liang, S.B. Hu, Synthesis and photocatalytic performance of reduced graphene oxide-TiO2 nanocomposites for Orange II degradation under UV light irradiation, Environ. Sci. Pollut. Res., 24 (2017) 12416–12425.
  4. D.B. Zeng, C.L. Yu, Q.Z. Fan, J.L. Zeng, L.F. Wei, Z.S. Li, K. Yang, H.B. Jia, Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants, Chem. Eng. J., 391 (2020)123607, doi: 10.1016/j.cej.2019.123607.
  5. W. Liu, Y.Q. Yu, L.X. Cao, G. Su, X.Y. Liu, L. Zhang, Y.G. Wang, Synthesis of monoclinic structured BiVO4 spindly microtubes in deep eutectic solvent and their application for dye degradation, J. Hazard. Mater., 181 (2010) 1102–1108.
  6. A.P. Zhang, J.Z. Zhang, Effects of europium doping on the photocatalytic behavior of BiVO4, J. Hazard. Mater., 173 (2010) 265–272.
  7. S. Teyyebah, T. Ahmad, L. Byeong-Kyu, Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/ rGO photoanode for greatly enhanced photoelectrochemical water splitting, Sol. Energy Mater. Sol. Cells, 185 (2018) 325–332.
  8. Y. Li, Z.H. Sun, S.M. Zhu, Y.L. Liao, Z.X. Chen, D. Zhang, Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst, Carbon, 94 (2015) 599–606.
  9. O.K. Okoth, K. Yan, J. Zhang, Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin, Carbon, 120 (2017) 194–202.
  10. A.L. Wang, S. Song, Y.B. Zhao, W. Wu, Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities, J. Colloid Interface Sci., 445 (2015) 330–336.
  11. G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, R. Pasricha, ZnO decorated luminescent graphene as a potential gas sensor at room temperature, Carbon, 50 (2012) 385–394.
  12. K. Zhao, X.Q. Yan, Y.S. Gu, Z. Kang, Z.M. Bai, S.Y. Cao, Y.C. Liu, X.H. Zhang, Y. Zhang, Self-powered photoelectrochemical biosensor based on CdS/RGO/ZnO nanowire array heterostructure, Small, 12 (2016) 245–251.
  13. S.B. Gawande, S.R. Thakare, Graphene wrapped BiVO4 photocatalyst and its enhanced performance under visible light irradiation, Int. Nano Lett., 2 (2012) 11–16.
  14. Y. Yan, S.F. Sun, Y. Song, X. Yan, W.S. Guan, X.L. Liu, W.D. Shi, Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin, J. Hazard. Mater., 250–251 (2013) 106–114.
  15. X.F. Zhang, S. Chen, X. Quan, H.M. Zhao, Preparation and characterization of BiVO4 film electrode and investigation of its photoelectrocatalytic (PEC) ability under visible light, Sep. Purif. Technol., 64 (2008) 309–313.
  16. F.Q. Zhou, Y.L. Min, J.C. Fan, Q.J. Xu, Reduced graphene oxidegrafted cylindrical like W doped BiVO4 hybrids with enhanced performances for photocatalytic applications, Chem. Eng. J., 266 (2015) 48–55.
  17. J. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4, Adv. Funct. Mater., 16 (2006) 2163–2169.
  18. R. Muzyka, M. Kwoka, Ł. Smędowski, N. Díez, G. Gryglewicz, Oxidation of graphite by different modified Hummers methods, New Carbon Mater., 32 (2017) 15–20.
  19. Y.S. Fu, X.Q. Sun, X. Wang, BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation, Mater. Chem. Phys., 131 (2011) 325–330.
  20. X. Lin, X.Y. Guo, W.L. Shi, L.N. Zhao, Y.S. Yan, Q.W. Wang, Ternary heterostructured Ag-BiVO4/InVO4 composites: Synthesis and enhanced visible-light-driven photocatalytic activity, J. Alloys Compd., 635 (2015) 256–264.
  21. F. Lin, D.G. Wang, Z.X. Jiang, Y. Ma, J. Li, R.G. Li, C Li, Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant, Energy Environ. Sci., 5 (2012) 6400–6406.
  22. Q.M. Shi, W.R. Zhao, L.H. Xie, J.S. Chen, M. Zhang, Y.J. Li, Enhanced visible-light driven photocatalytic mineralization of indoor toluene via a BiVO4/reduced graphene oxide/Bi2O3 all-solid-state Z-scheme system, J. Alloys Compd., 662 (2016) 108–117.
  23. J.B. Wang, C. Liu, S. Yang, X. Lin and W.L. Shi, Fabrication of a ternary heterostructure BiVO4 quantum dots/C60/g-C3N4 photocatalyst with enhanced photocatalytic activity, J. Phys. Chem. Solids, 136 (2020) 109164, doi: 10.1016/j.jpcs.2019.109164.
  24. C.Y. Feng, Y.C. Deng, L. Tang, G.M. Zeng, J.J. Wang, J.F. Yu, Y.N. Liu, B. Peng, H.P. Feng, J.J. Wang, Core-shell Ag2CrO4/ N-GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities, Appl. Catal., B, 239 (2018) 525–536.
  25. X.Q. Cao, Y. Gu, H.L. Tian, Y.F. Fang, D. Johnson, Z.Y. Ren, C.C. Chen, Y.P. Huang, Microemulsion synthesis of ms/ tz-BiVO4 composites: the effect of pH on crystal structure and photocatalytic performance, Ceram. Int., 46 (2020) 20788–20797.
  26. B. Ren, T.C. Wang, G.Z. Qu, F. Deng, D.L. Liang, W.L. Yang, M.S. Liu, In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation, Environ. Sci. Pollut. Res., 25 (2018) 1–12.
  27. G.Q. Zhou, J.Y. Guo, G.W. Zhou, X.K. Wan, H.X. Shi, Photodegradation of Orange II using waste paper sludgederived heterogeneous catalyst in the presence of oxalate under ultraviolet light emitting diode irradiation, J. Environ. Sci., 47 (2016) 63–70.
  28. Y.Y. Yao, L. Fang, Y.P. Zhu, F.Y. Wei, X.T. Liu, C. Lian, S.B. Wang, Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II, J. Hazard. Mater., 297 (2015) 224–233.
  29. H. Moussa, E. Girot, K. Mozet, H. Alem, G. Medjahdi, R. Schneider, ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlightdriven photocatalysis, Appl. Catal., B, 185 (2016) 11–21.
  30. P. Wang, J. Wang, X.F. Wang, H.G. Yu, J.G. Yu, M. Lei, Y.G. Wang, One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity, Appl. Catal., B, 132–133 (2013) 452–459.
  31. W.W. Yao, Y.H. Li, D.X. Yan, M. Ma, Z.K. He, S.G. Chai, X.S. Su, F. Chen, Q. Fu, Fabrication and photocatalysis of
    TiO2-graphene sandwich nanosheets with smooth surface and controlled thickness, Chem. Eng. J., 229 (2013) 569–576.
  32. M. Lei, N. Wang, L.H. Zhu, C.S. Xie, H.Q. Tang, A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst, Chem. Eng. J., 241 (2014) 207–215.
  33. X.N. Luan, M.T.G. Wing, Y. Wang, Enhanced photocatalytic activity of graphene oxide/titania nanosheets composites for methylene blue degradation, Mater. Sci. Semicond. Process., 30 (2015) 592–598.