References
- S. Griffin, M.I. Masood, M.J. Nasim, M. Sarfraz, A.P. Ebokaiwe,
K.-H. Schäfer, C.M. Keck, C. Jacob, Natural nanoparticles:
a particular matter inspired by nature, Antioxidants, 7 (2017)
1–21.
- A. Hartland, J.R. Lead, V.I. Slaveykova, D. O’Carroll,
E. Valsami-Jones, The environmental significance of natural
nanoparticles,
Nat. Educ. Knowl., 4 (2013) 1–7.
- P. Westerhoff, A. Atkinson, J. Fortner, M.S. Wong, J. Zimmerman,
J. Gardea-Torresdey, J. Ranville, P. Herckes, Low risk posed by
engineered and incidental nanoparticles in drinking water,
Nat. Nanotechnol., 13 (2018) 661–669.
- K. Tiede, S.F. Hanssen, P. Westerhoff, G.J. Fern, S.M. Hankin,
R.J. Aitken, Q. Chaudhry, A.B.A. Boxall, How important is
drinking water exposure for the risks of engineered nanoparticles
to consumers?, Nanotoxicology, 10 (2016) 102–110.
- N.S. Wigginton, K.L. Haus, M.F. Hochella Jr., Aquatic environmental
nanoparticles, J. Environ. Monit., 9 (2007) 1306–1316.
- M.F. Hochella Jr., There’s plenty of room at the bottom:
nanoscience in geochemistry, Geochim. Cosmochim. Acta, 66
(2002) 735–743.
- E. Tipping, D.C. Higgins, The effect of adsorbed humic
substances on the colloid stability of haematite particles,
Colloids Surf., 5 (1982) 85–92.
- J.R. Lead, K.J. Wilkinson, Aquatic colloids and nanoparticles:
current knowledge and future trends, Environ. Chem., 3 (2006)
159–171.
- S.R. Tangaa, H. Selck, M. Winther-Nielsen, F.R. Khan, Trophic
transfer of metal-based nanoparticles in aquatic environments:
a review and recommendations for future research focus,
Environ. Sci. Nano, 3 (2016) 966–981.
- M. Troester, H.-J. Brauch, T. Hofmann, Vulnerability of drinking
water supplies to engineered nanoparticles, Water Res.,
96 (2016) 255–279.
- K.D. Good, L.E. Bergman, S.S. Klara, M.E. Leitch,
J.M. VanBriesen, Implications of engineered nanomaterials on
drinking water sources, J. Am. Water Works Assn., 108 (2016)
E1–E17.
- M. Zhang, J. Yang, Z. Cai, Y. Feng, Y. Wang, D. Zhang, Z. Pan,
Detection of engineered nanoparticles in aquatic environments:
current status and challenges in enrichment, separation, and
analysis, Environ. Sci. Nano, 6 (2019) 709–735.
- S.V. Panno, W.R. Kelly, R. Walton, J. Scott, Microplastic
contamination in Karst groundwater systems, Groundwater,
57 (2019) 189–196.
- S.M. Mintenig, M.G.J. Löder, S. Primpke, G. Gerdts, Low
numbers of microplastics detected in drinking water from
ground water sources, Sci. Total Environ., 648 (2019) 631–635.
- V.S. Sousa, M.R. Teixeira, Metal-based engineered nanoparticles
in the drinking water treatment systems: a critical review, Sci.
Total Environ., 707 (2020) 136077.
- S.J. Duranceau, J.S. Taylor, Chapter 11 – Membrane Processes,
J.K. Edzwald, Ed., Water Quality and Treatment, 6th ed.,
McGraw-Hill, New York, NY, 2011, pp. 11–1 to 11–106.
- B.J. Marinas, R.I. Urama, Modeling concentration-polarization
in reverse osmosis spiral-wound elements, J. Environ. Eng.,
122 (1996) 292–298.
- O. Kedem, A. Katchalsky, Thermodynamic analysis of the
permeability of biological membranes
to non-electrolytes,
Biochim. Biophys. Acta, 27 (1958) 229–246.
- O. Kedem, A. Katchalsky, Permeability of composite membranes.
Part 1.–Electric current, volume flow and flow of solute through
membranes, Trans. Faraday Soc., 59 (1963) 1918–1930.
- K. Wesolowska, S. Koter, M. Bodzek, Modelling of nanofiltration
in softening water, Desalination, 163 (2004) 137–151.
- S.J. Duranceau, J.S. Taylor, L.A. Mulford, SOC removal in
a membrane softening process, J. Am. Water Works Assn.,
84 (1992) 68–78.
- J.G. Wijmans, R.W. Baker, The solution-diffusion model: a
review, J. Membr. Sci., 107 (1995) 1–21.
- T. Chaabane, S. Taha, M.T. Ahmed, R. Maachi, G. Dorange,
Coupled model of film theory and the Nernst–Planck equation
in nanofiltration, Desalination, 206 (2007) 424–432.
- W.R. Bowen, H. Mukhtar, Characterisation and prediction
of separation performance of nanofiltration membranes,
J. Membr. Sci., 112 (1996) 263–274.
- Y. Garba, S. Taha, N. Gondrexon, G. Dorange, Ion transport
modelling through nanofiltration membranes, J. Membr. Sci.,
160 (1999) 187–200.
- S.J. Duranceau, Modeling the permeate transient response to
perturbations from steady state in a nanofiltration process,
Desal. Water Treat., 1 (2009) 7–16.
- J.S. Taylor, J.A.M.H. Hofman, S.J. Duranceau, J.C. Kruithof,
J.C. Schippers, Simplified modeling of diffusion controlled
membrane systems, J. Water Supply Res. Technol. AQUA,
43 (1994) 238–245.
- S. Jeffery-Black, S.J. Duranceau, The influence of solute
polarizability and molecular volume on the rejection of trace
organics in loose nanofiltration membrane processes, Desal.
Water Treat., 57 (2016) 29059–29069.
- B. van der Bruggen, C. Vandecasteele, Removal of pollutants
from surface water and groundwater by nanofiltration:
overview of possible applications in the drinking water
industry, Environ. Pollut., 122 (2003) 435–445.
- V. Geraldes, V. Semiao, M.N. de Pinho, The effect of the laddertype
spacers configuration in NF spiral-wound modules on
the concentration boundary layers disruption, Desalination,
146 (2002) 187–194.
- J.S. Vrouwenvelder, D.A. Graf von der Schulenburg,
J.C. Kruithof, M.L. Johns, M.C.M. van Loosdrecht, Biofouling of
spiral-wound nanofiltration and reverse osmosis membranes:
a feed spacer problem, Water Res., 43 (2009) 583–594.
- Y. Gao, S. Haavisto, C.Y. Tang, J. Salmela, W. Li, Characterization
of fluid dynamics in spacer-filled channels for membrane
filtration using Dopper optical coherence tomography,
J. Membr. Sci., 448 (2013) 198–208.
- S.G. Yiantsios, D. Sioutopoulos, A.J. Karabelas, Colloidal
fouling of RO membranes: an overview of key issues and efforts
to develop improved prediction techniques, Desalination,
183 (2005) 257–272.
- C.Y. Tang, T.H. Chong, A.G. Fane, Colloidal interactions and
fouling of NF and RO membranes: a review, Adv. Colloid
Interface Sci., 164 (2011) 126–143.
- A.I. Radu, M.S.H. van Steen, J.S. Vrouwenvelder, M.C.M. van
Loosdrecht, C. Picioreanu, Spacer geometry and particle
deposition in spiral wound membrane feed channels, Water
Res., 64 (2014) 160–176.
- T.E. Abbott Chalew, G.S. Ajmani, H. Huang, K.J. Schwab,
Evaluating nanoparticle breakthrough during drinking water
treatment, Environ. Health Perspect., 121 (2013) 1161–1166.
- V.S. Sousa, M.R. Teixeira, Silver nanoparticles separation
from the water using nanofiltration membranes:
the role of
mono-divalent salts and NOM, Sep. Purif. Technol., 149 (2015)
165–173.
- D.A. Ladner, M. Steele, A. Weir, K. Hristovski, P. Westerhoff,
Functionalized nanoparticle interactions with polymeric
membranes, J. Hazard. Mater., 211–212 (2012) 288–295.
- F. Van Koetsem, S. Verstraete, E. Wallaert, K. Verbeken,
P. Van der Meeren, J. Rinklebe, G. Du Laing, Use of filtration
techniques to study environmental fate of engineered metallic
nanoparticles: factors affecting filter performance, J. Hazard.
Mater., 322 (2017) 105–117.
- Y. Fang, S. Duranceau, Study of the effect of nanoparticles and
surface morphology on reverse osmosis and nanofiltration
membrane productivity, Membranes, 3 (2013) 196–225.
- P.R. Neal, H. Li, A.G. Fane, D.E. Wiley, The effect of filament
orientation on critical flux and particle deposition in spacerfilled
channels, J. Membr. Sci., 214 (2003) 165–178.
- F. Li, W. Meindersma, A.B. De Haan, T. Reith, Optimization of
commercial net spacers in spiral wound membrane modules,
J. Membr. Sci., 208 (2002) 289–302.
- J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane,
Spiral wound modules and spacers: review and analysis,
J. Membr. Sci., 242 (2004) 129–153.
- A.L. Ahmad, K.K. Lau, M.Z. Abu Bakar, Impact of different
spacer filament geometries on concentration polarization
control in narrow membrane channel, J. Membr. Sci., 262 (2005)
138–152.
- G. Guillen, E.M.V. Hoek, Modeling the impacts of feed spacer
geometry on reverse osmosis and nanofiltration processes,
Chem. Eng. J., 149 (2009) 221–231.
- S.S. Bucs, R.V. Linares, J.O. Marston, A.I. Radu,
J.S. Vrouwenvelder, D. Picioreanu, Experimental and numerical
characterization of the water flow in spacer-filled channels
of spiral-wound membranes, Water Res., 87 (2015) 299–310.
- R. Xu, Light scattering: a review of particle characterization
applications, Particuology, 18 (2015) 11–21.
- ASTM International, Standard Guide for Measurement of
Particle Size Distribution of Nanomaterials in Suspension by
Nanoparticle Tracking Analysis (NTA), American Society for
Testing and Materials, West Chonshohocken, PA, 2018. Available
at: https://compass.astm.org/Standards/HISTORICAL/E2834-
12.htm
- B. Tolla, D. Boldridge, Distortion of single-particle optical
sensing (SPOS) particle count by sub-countable particles,
Part. Part. Syst. Char., 27 (2010) 21–31.
- International Organization for Standardization, ISO 21501-
2:2019, Determination of Particle Size Distribution – Single
Particle Light Interaction Methods – Part 2: Light Scattering
Liquid-Borne Particle Counter, ISO Central Secretariat
Ch. de Blandonnet 8 Case Postale 401 CH – 1214 Vernier,
Geneva Switzerland, 2019. Available at: https://www.iso.org/
standard/75048.html
- International Organization for Standardization, ISO 21501-
3:2019, Determination of Particle Size Distribution – Single
Particle Light Interaction Methods – Part 3: Light Extinction
Liquid-Borne Particle Counter, ISO Central Secretariat
Ch. de Blandonnet 8 Case Postale 401 CH – 1214 Vernier,
Geneva Switzerland, 2019. Available at: https://www.iso.org/
standard/75049.html
- M. Filella, V. Chanudet, S. Philippo, F. Quentel, Particle
size and mineralogical composition of inorganic colloids in
waters draining the adit of an abandoned mine, Geosdorf,
Luxembourg, J. Appl. Geochem., 24 (2009) 52–61.
- F. Schiperski, J. Zirlewagen, O. Hillebrand, T. Licha, T. Scheytt,
Preliminary results on the dynamics of particles and their
size distribution at a karst spring during a snowmelt event,
J. Hydrol., 524 (2015) 326–332.
- J.A. Brant, I. Koyuncu, H. LeCoane, S.V. Verrapaneni,
M. Wiesner, Occurrence and composition of particulates in
filter process streams, J. Am. Water Works Assn., 103 (2011)
46–60.
- R. Kaegi, T. Wagner, B. Hetzer, B. Sinnet, G. Tzvetkov, M. Boller,
Size, number and chemical composition of nanosized particles
in drinking water determined by analytical microscopy and
LIBD, Water Res., 42 (2008) 2778–2786.
- S. Hong, M. Elimelech, Chemical and physical aspects of natural
organic matter (NOM) fouling of nanofiltration membranes,
J. Membr. Sci., 132 (1997) 159–181.
- American Water Chemicals, Analytical Testing Report for
Boynton Beach 10/24/2019, 1802 Corporate Center Lane, Plant
City, FL 33563, 2019.
- E.M. Hoek, A.S. Kim, M. Elimelech, Influence of crossflow
membrane filter geometry and shear rate on colloidal fouling in
reverse osmosis and nanofiltration separations, Environ. Eng.
Sci., 19 (2002) 357–372.
- J. Bergendahl, D. Grasso, Prediction of colloid detachment
in a model porous media: hydrodynamics, Chem. Eng. Sci.,
55 (2000) 1523–1532.
- A.H. Haidari, S.G.J. Heijman, W.S.J. Uijttewaal, W.G.J. van der
Meer, Determining the effect of spacer orientations on channel
hydraulic conditions using PIV, J. Water Process Eng., 31 (2019)
100820.
- M. Oshchepkov, K. Popov, A. Kovalenko, A. Redchuk,
J. Dikareva, I. Pochitalkina, Initial stages of gypsum nucleation:
the role of “nano/microdust”, Minerals, 10 (2020) 1083.