References

  1. S. Griffin, M.I. Masood, M.J. Nasim, M. Sarfraz, A.P. Ebokaiwe, K.-H. Schäfer, C.M. Keck, C. Jacob, Natural nanoparticles: a particular matter inspired by nature, Antioxidants, 7 (2017) 1–21.
  2. A. Hartland, J.R. Lead, V.I. Slaveykova, D. O’Carroll, E. Valsami-Jones, The environmental significance of natural nanoparticles, Nat. Educ. Knowl., 4 (2013) 1–7.
  3. P. Westerhoff, A. Atkinson, J. Fortner, M.S. Wong, J. Zimmerman, J. Gardea-Torresdey, J. Ranville, P. Herckes, Low risk posed by engineered and incidental nanoparticles in drinking water, Nat. Nanotechnol., 13 (2018) 661–669.
  4. K. Tiede, S.F. Hanssen, P. Westerhoff, G.J. Fern, S.M. Hankin, R.J. Aitken, Q. Chaudhry, A.B.A. Boxall, How important is drinking water exposure for the risks of engineered nanoparticles to consumers?, Nanotoxicology, 10 (2016) 102–110.
  5. N.S. Wigginton, K.L. Haus, M.F. Hochella Jr., Aquatic environmental nanoparticles, J. Environ. Monit., 9 (2007) 1306–1316.
  6. M.F. Hochella Jr., There’s plenty of room at the bottom: nanoscience in geochemistry, Geochim. Cosmochim. Acta, 66 (2002) 735–743.
  7. E. Tipping, D.C. Higgins, The effect of adsorbed humic substances on the colloid stability of haematite particles, Colloids Surf., 5 (1982) 85–92.
  8. J.R. Lead, K.J. Wilkinson, Aquatic colloids and nanoparticles: current knowledge and future trends, Environ. Chem., 3 (2006) 159–171.
  9. S.R. Tangaa, H. Selck, M. Winther-Nielsen, F.R. Khan, Trophic transfer of metal-based nanoparticles in aquatic environments: a review and recommendations for future research focus, Environ. Sci. Nano, 3 (2016) 966–981.
  10. M. Troester, H.-J. Brauch, T. Hofmann, Vulnerability of drinking water supplies to engineered nanoparticles, Water Res., 96 (2016) 255–279.
  11. K.D. Good, L.E. Bergman, S.S. Klara, M.E. Leitch, J.M. VanBriesen, Implications of engineered nanomaterials on drinking water sources, J. Am. Water Works Assn., 108 (2016) E1–E17.
  12. M. Zhang, J. Yang, Z. Cai, Y. Feng, Y. Wang, D. Zhang, Z. Pan, Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis, Environ. Sci. Nano, 6 (2019) 709–735.
  13. S.V. Panno, W.R. Kelly, R. Walton, J. Scott, Microplastic contamination in Karst groundwater systems, Groundwater, 57 (2019) 189–196.
  14. S.M. Mintenig, M.G.J. Löder, S. Primpke, G. Gerdts, Low numbers of microplastics detected in drinking water from ground water sources, Sci. Total Environ., 648 (2019) 631–635.
  15. V.S. Sousa, M.R. Teixeira, Metal-based engineered nanoparticles in the drinking water treatment systems: a critical review, Sci. Total Environ., 707 (2020) 136077.
  16. S.J. Duranceau, J.S. Taylor, Chapter 11 – Membrane Processes, J.K. Edzwald, Ed., Water Quality and Treatment, 6th ed., McGraw-Hill, New York, NY, 2011, pp. 11–1 to 11–106.
  17. B.J. Marinas, R.I. Urama, Modeling concentration-polarization in reverse osmosis spiral-wound elements, J. Environ. Eng., 122 (1996) 292–298.
  18. O. Kedem, A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes
    to non-electrolytes, Biochim. Biophys. Acta, 27 (1958) 229–246.
  19. O. Kedem, A. Katchalsky, Permeability of composite membranes. Part 1.–Electric current, volume flow and flow of solute through membranes, Trans. Faraday Soc., 59 (1963) 1918–1930.
  20. K. Wesolowska, S. Koter, M. Bodzek, Modelling of nanofiltration in softening water, Desalination, 163 (2004) 137–151.
  21. S.J. Duranceau, J.S. Taylor, L.A. Mulford, SOC removal in a membrane softening process, J. Am. Water Works Assn., 84 (1992) 68–78.
  22. J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  23. T. Chaabane, S. Taha, M.T. Ahmed, R. Maachi, G. Dorange, Coupled model of film theory and the Nernst–Planck equation in nanofiltration, Desalination, 206 (2007) 424–432.
  24. W.R. Bowen, H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263–274.
  25. Y. Garba, S. Taha, N. Gondrexon, G. Dorange, Ion transport modelling through nanofiltration membranes, J. Membr. Sci., 160 (1999) 187–200.
  26. S.J. Duranceau, Modeling the permeate transient response to perturbations from steady state in a nanofiltration process, Desal. Water Treat., 1 (2009) 7–16.
  27. J.S. Taylor, J.A.M.H. Hofman, S.J. Duranceau, J.C. Kruithof, J.C. Schippers, Simplified modeling of diffusion controlled membrane systems, J. Water Supply Res. Technol. AQUA, 43 (1994) 238–245.
  28. S. Jeffery-Black, S.J. Duranceau, The influence of solute polarizability and molecular volume on the rejection of trace organics in loose nanofiltration membrane processes, Desal. Water Treat., 57 (2016) 29059–29069.
  29. B. van der Bruggen, C. Vandecasteele, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut., 122 (2003) 435–445.
  30. V. Geraldes, V. Semiao, M.N. de Pinho, The effect of the laddertype spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption, Desalination, 146 (2002) 187–194.
  31. J.S. Vrouwenvelder, D.A. Graf von der Schulenburg, J.C. Kruithof, M.L. Johns, M.C.M. van Loosdrecht, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem, Water Res., 43 (2009) 583–594.
  32. Y. Gao, S. Haavisto, C.Y. Tang, J. Salmela, W. Li, Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Dopper optical coherence tomography, J. Membr. Sci., 448 (2013) 198–208.
  33. S.G. Yiantsios, D. Sioutopoulos, A.J. Karabelas, Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques, Desalination, 183 (2005) 257–272.
  34. C.Y. Tang, T.H. Chong, A.G. Fane, Colloidal interactions and fouling of NF and RO membranes: a review, Adv. Colloid Interface Sci., 164 (2011) 126–143.
  35. A.I. Radu, M.S.H. van Steen, J.S. Vrouwenvelder, M.C.M. van Loosdrecht, C. Picioreanu, Spacer geometry and particle deposition in spiral wound membrane feed channels, Water Res., 64 (2014) 160–176.
  36. T.E. Abbott Chalew, G.S. Ajmani, H. Huang, K.J. Schwab, Evaluating nanoparticle breakthrough during drinking water treatment, Environ. Health Perspect., 121 (2013) 1161–1166.
  37. V.S. Sousa, M.R. Teixeira, Silver nanoparticles separation from the water using nanofiltration membranes:
    the role of mono-divalent salts and NOM, Sep. Purif. Technol., 149 (2015) 165–173.
  38. D.A. Ladner, M. Steele, A. Weir, K. Hristovski, P. Westerhoff, Functionalized nanoparticle interactions with polymeric membranes, J. Hazard. Mater., 211–212 (2012) 288–295.
  39. F. Van Koetsem, S. Verstraete, E. Wallaert, K. Verbeken, P. Van der Meeren, J. Rinklebe, G. Du Laing, Use of filtration techniques to study environmental fate of engineered metallic nanoparticles: factors affecting filter performance, J. Hazard. Mater., 322 (2017) 105–117.
  40. Y. Fang, S. Duranceau, Study of the effect of nanoparticles and surface morphology on reverse osmosis and nanofiltration membrane productivity, Membranes, 3 (2013) 196–225.
  41. P.R. Neal, H. Li, A.G. Fane, D.E. Wiley, The effect of filament orientation on critical flux and particle deposition in spacerfilled channels, J. Membr. Sci., 214 (2003) 165–178.
  42. F. Li, W. Meindersma, A.B. De Haan, T. Reith, Optimization of commercial net spacers in spiral wound membrane modules, J. Membr. Sci., 208 (2002) 289–302.
  43. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers: review and analysis, J. Membr. Sci., 242 (2004) 129–153.
  44. A.L. Ahmad, K.K. Lau, M.Z. Abu Bakar, Impact of different spacer filament geometries on concentration polarization control in narrow membrane channel, J. Membr. Sci., 262 (2005) 138–152.
  45. G. Guillen, E.M.V. Hoek, Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes, Chem. Eng. J., 149 (2009) 221–231.
  46. S.S. Bucs, R.V. Linares, J.O. Marston, A.I. Radu, J.S. Vrouwenvelder, D. Picioreanu, Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes, Water Res., 87 (2015) 299–310.
  47. R. Xu, Light scattering: a review of particle characterization applications, Particuology, 18 (2015) 11–21.
  48. ASTM International, Standard Guide for Measurement of Particle Size Distribution of Nanomaterials in Suspension by Nanoparticle Tracking Analysis (NTA), American Society for Testing and Materials, West Chonshohocken, PA, 2018. Available at: https://compass.astm.org/Standards/HISTORICAL/E2834- 12.htm
  49. B. Tolla, D. Boldridge, Distortion of single-particle optical sensing (SPOS) particle count by sub-countable particles, Part. Part. Syst. Char., 27 (2010) 21–31.
  50. International Organization for Standardization, ISO 21501- 2:2019, Determination of Particle Size Distribution – Single Particle Light Interaction Methods – Part 2: Light Scattering Liquid-Borne Particle Counter, ISO Central Secretariat Ch. de Blandonnet 8 Case Postale 401 CH – 1214 Vernier, Geneva Switzerland, 2019. Available at: https://www.iso.org/ standard/75048.html
  51. International Organization for Standardization, ISO 21501- 3:2019, Determination of Particle Size Distribution – Single Particle Light Interaction Methods – Part 3: Light Extinction Liquid-Borne Particle Counter, ISO Central Secretariat Ch. de Blandonnet 8 Case Postale 401 CH – 1214 Vernier, Geneva Switzerland, 2019. Available at: https://www.iso.org/ standard/75049.html
  52. M. Filella, V. Chanudet, S. Philippo, F. Quentel, Particle size and mineralogical composition of inorganic colloids in waters draining the adit of an abandoned mine, Geosdorf, Luxembourg, J. Appl. Geochem., 24 (2009) 52–61.
  53. F. Schiperski, J. Zirlewagen, O. Hillebrand, T. Licha, T. Scheytt, Preliminary results on the dynamics of particles and their size distribution at a karst spring during a snowmelt event, J. Hydrol., 524 (2015) 326–332.
  54. J.A. Brant, I. Koyuncu, H. LeCoane, S.V. Verrapaneni, M. Wiesner, Occurrence and composition of particulates in filter process streams, J. Am. Water Works Assn., 103 (2011) 46–60.
  55. R. Kaegi, T. Wagner, B. Hetzer, B. Sinnet, G. Tzvetkov, M. Boller, Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD, Water Res., 42 (2008) 2778–2786.
  56. S. Hong, M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes, J. Membr. Sci., 132 (1997) 159–181.
  57. American Water Chemicals, Analytical Testing Report for Boynton Beach 10/24/2019, 1802 Corporate Center Lane, Plant City, FL 33563, 2019.
  58. E.M. Hoek, A.S. Kim, M. Elimelech, Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations, Environ. Eng. Sci., 19 (2002) 357–372.
  59. J. Bergendahl, D. Grasso, Prediction of colloid detachment in a model porous media: hydrodynamics, Chem. Eng. Sci., 55 (2000) 1523–1532.
  60. A.H. Haidari, S.G.J. Heijman, W.S.J. Uijttewaal, W.G.J. van der Meer, Determining the effect of spacer orientations on channel hydraulic conditions using PIV, J. Water Process Eng., 31 (2019) 100820.
  61. M. Oshchepkov, K. Popov, A. Kovalenko, A. Redchuk, J. Dikareva, I. Pochitalkina, Initial stages of gypsum nucleation: the role of “nano/microdust”, Minerals, 10 (2020) 1083.